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Response nonlinearities are ubiquitous throughout the brain, especially within sensory cortices where changes in stimulus in-
tensity typically produce compressed responses. Although this relationship is well established in electrophysiological measure-
ments, it remains controversial whether the same nonlinearities hold for population-based measurements obtained with
human fMRI. We propose that these purported disparities are not contingent on measurement type and are instead largely
dependent on the visual system state at the time of interrogation. We show that deploying a contrast adaptation paradigm
permits reliable measurements of saturating sigmoidal contrast response functions (10 participants, 7 female). When not con-
trolling the adaptation state, our results coincide with previous fMRI studies, yielding nonsaturating, largely linear contrast
responses. These findings highlight the important role of adaptation in manifesting measurable nonlinear responses within
human visual cortex, reconciling discrepancies reported in vision neuroscience, re-establishing the qualitative relationship
between stimulus intensity and response across different neural measures and the concerted study of cortical gain control.
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Significance Statement

Nonlinear stimulus–response relationships govern many essential brain functions, ranging from the sensory to cognitive level.
Certain core response properties previously shown to be nonlinear with nonhuman electrophysiology recordings have yet to
be reliably measured with human neuroimaging, prompting uncertainty and reconsideration. The results of this study stand
to reconcile these incongruencies in the vision neurosciences, demonstrating the profound impact adaptation can have on
brain activation throughout the early visual cortex. Moving forward, these findings facilitate the study of modulatory influen-
ces on sensory processing (i.e., arousal and attention) and help establish a closer link between neural recordings in animals
and hemodynamic measurements from human fMRI, resuming a concerted effort to understand operations in the mamma-
lian cortex.

Introduction
Our perception of sensory experiences depends heavily on non-
linear computations. As information about our environment cas-
cades from one brain area to another, nonlinearities reshape

representations, allowing for increasingly complex perceptual
discriminability (Shapley and Victor, 1978; DiCarlo et al., 2012).
Divisive normalization is one well-known nonlinear neural com-
putation (Heeger, 1992; Carandini and Heeger, 1994) governing
gain control of visuocortical responses and engenders the com-
pressive sigmoidal relationship between the intensity of a stimu-
lus (e.g., luminance contrast) and its subsequent neural response
(Carandini et al., 1997, 1999; Priebe and Ferster, 2012). This rela-
tionship, commonly referred to as the contrast response function
(CRF), is predominantly nonlinear when recording from single
units within nonhuman striate cortex (Dean, 1981; Albrecht and
Hamilton, 1982; Bonds, 1991; Williford and Maunsell, 2006), and
yet population-based measurements obtained with human func-
tional magnetic resonance imaging (fMRI) instead reveal a predom-
inantly linear CRF within early visual areas (Tootell et al., 1995,
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1998; Boynton et al., 1996, 1999; Buracas et al., 2005; Buracas and
Boynton, 2007; Murray, 2008; Pestilli et al., 2011; Hara and
Gardner, 2014; Marquardt et al., 2018; Itthipuripat et al., 2019).

There are a number of reasons why previous fMRI studies
may have been unable to capture saturating nonlinearities in the
contrast response function. First, most human fMRI studies
seeking to measure CRFs have used blocked stimulus designs,
with block durations ranging between 18 and 48 s (Tootell et al.,
1995, 1998; Boynton et al., 1996; Buracas et al., 2005; Buracas
and Boynton, 2007). During similar stimulus presentation peri-
ods, previous work has shown that the slow decay rate of neural
activity can vary nonmonotonically with contrast level (Ho and
Berkley, 1988), with longer rates of decay tracking with higher
contrast adaptation levels. Furthermore, general elevations in
contrast thresholds have also been shown to increase with
adapter contrast and adaptation time periods (Greenlee et al.,
1991). The decay in neural activity during sustained stimulus
presentation reflects the unfolding of contrast adaptation, with
horizontal contrast sensitivity shifts being the hallmark impact
on contrast response functions (Ohzawa et al., 1985), although
adaptation time course characteristics (i.e., decay rate and time-
to-peak response) can vary substantially within local populations
(Albrecht et al., 1984). A partial explanation for the linear
response patterns often reported with blocked design fMRI stud-
ies seeking to capture nonlinear functions is that they are conflat-
ing a myriad of systematic changes in response variability related
to contrast adaptation as representing the response to a particu-
lar contrast level. The promotion of different adaptation states
throughout an fMRI run complicates the comparisons of meas-
urements across multiple contrast levels as well as across studies
using different stimulus presentation timing, suggesting that al-
ternative event-related experimental designs should be consid-
ered instead.

Scant but compelling evidence for nonlinear CRFs in humans
has been produced by fMRI studies using event-related designs
(Gardner et al., 2005; Li et al., 2008; but see Pestilli et al. (2011)),
with Gardner et al. (2005) demonstrating how adaptation at dif-
ferent contrast levels can produce systematic shifts of the meas-
ured function, although still lacking a clear nonlinear response
profile (i.e., response saturation). Their study effectively meas-
ured the same dynamic range of the CRF in each adaptation con-
dition as the measured contrast levels were yoked to the contrast
gain effects they observed. Although this experimental design
was chosen in an effort to best capture lateral shifts in the CRF,
the response saturation at high contrast levels, especially at lower
adapter conditions, was inadvertently overlooked. Importantly, it
is also unclear if the exclusion of constrained contrast adaptation
itself can lead to linear response functions, replicating previous
population-based measurements.

In this study we set out to measure nonlinear, saturating con-
trast response functions using fMRI and determine the extent to
which a constrained versus unconstrained adapted state of the
system promotes nonlinear population responses. Specifically,
we sought to test the degree to which contrast adaptation within
early visual cortical areas reveals nonlinear contrast response
functions with human fMRI.

Materials and Methods
Participants. All 10 participants (7 female) in this study were

between the ages of 18 and 37, reported normal or corrected-to-normal
visual acuity, and were recruited from Boston University and the sur-
rounding community. All participants provided written informed con-
sent before study enrollment and completed a safety screening form to

verify they had no MRI-related contraindications. Participants were
reimbursed for volunteering their time. All aspects of the study were
approved by the Boston University Institutional Review Board.
Experiment 1 had a total of eight participants, and experiment 2 had a
total of six participants. Of the eight participants recruited for experi-
ment 1, four of them also participated in experiment 2.

Visual stimuli. Participants were presented with stimuli generated
using MATLAB (R2015b) and the Psychophysics MATLAB toolbox
(Brainard, 1997), which were displayed via back projection onto a screen
set within the MRI scanner bore, using an VPixx Technologies PROPixx
DLP LED projector (maximum luminance, 306 cd/m2). The linear gamma
of the projector was confirmed using photometer measurements (Konica
Minolta, LS-100; 1 digital-to-analog converter (DAC) step = 1.2 cd/m2).

Throughout the majority of each experimental fMRI run, partici-
pants viewed a stimulus display containing an arrangement of five con-
centric ring patterns radiating out from fixation (Fig. 1a). Each
concentric ring was composed of eight circular apertures equally spaced
along the entire ring circumference, with the polar angle positioning of
each set of apertures per ring alternating with a 22.5° degree offset to
maximize overall stimulus spatial density throughout the visual field.
Each aperture contained a sinusoidal grating stimulus at a fixed spatial
frequency oriented in a radial fashion relative to fixation to promote
maximal responsivity as has been previously reported when stimuli have
a radial orientation bias (Sasaki et al., 2006). The luminance contrast of
all apertures varied in tandem among nine different contrast intensities,
spaced above and below 16% contrast in octaves (2.7, 4, 5.3, 8, 16, 32, 48,
64, and 96% Michelson contrast). Aperture spatial frequency was opti-
mized for relative spatial frequency preference using a cortical magnifi-
cation function (multiplicative inverse function (Polimeni et al., 2006)).
Specifically, the cortically magnified spatial frequencies were 9.38, 6.81,
4.67, 3.07, and 1.95 cycles per degree corresponding respectively to aper-
tures centered at 0.9°, 1.5°, 2.5°, 4.2°, and 7° of eccentricity logarithmi-
cally spaced out from fixation. Correspondingly, aperture size (radius)
also increased logarithmically across each successive ring going from
parafovea (0.35°, innermost ring) out to the periphery (2.56°, outermost
ring). Furthermore, a Gaussian roll off was imposed to smooth the boun-
daries between the stimulus edge and the mean luminance background
(s = 30). The inner bound of the innermost aperture ring was 0.64° of
visual angle from fixation, whereas the outer bound of the outermost
aperture ring was 9.17°, resulting in a total stimulation area spanning
8.53°. Finally, to maintain vigorous cortical stimulation during stimulus
presentation, and to minimize retinal afterimages, the phase of the gra-
tings in all apertures was randomly shifted at a rate of 10Hz.

Experimental design. The goals of each experiment were as follows:
experiment 1, collect contrast responses following contrast adaptation;
experiment 2, collect contrast responses without any explicit adaptation.
All experimental data were collected over the course of two fMRI ses-
sions. The adaptation condition was collected during session 1, and the
adaptation-free (no adaptation) data were collected during session 2. A
third additional fMRI session was dedicated to collecting anatomic
images and data for population receptive field (pRF) mapping using
standard techniques and stimuli (Dumoulin and Wandell, 2008;
Kriegeskorte et al., 2008; Kay et al., 2013).

In all experiments, participants were presented with stimuli varying
in contrast using a fast event-related design, making up the majority of
each run (Fig. 1b). Stimuli were presented for a 2 s duration intermixed
with a null period, consisting of either an adaptation top-up stimulus
(16% contrast, adaptation condition) or a mean luminance background
(0% contrast, adaptation-free condition). Null periods varied in duration
between 4 and 17 s, with the overall experimental stimulus presentation
timing generated using the Optseq2 optimization tool (Dale, 1999). The
experimental presentation for experiment 1 was preceded by a 60 s initial
adaptation block, during which participants were adapted to a 16% con-
trast stimulus with visual properties identical to the null period stimulus
presented later in the event-related portion of the run. Previous studies
have demonstrated that a 60 s adaptation period is sufficient to induce a
stable adapted state of the human visual system (Blakemore and
Campbell, 1969), and using a top-up adaptation stimulus during null
periods mitigated any recovery from adaptation, serving to maintain the
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initial contrast adaptation state of the visual system throughout the ex-
perimental run (Foley and Boynton, 1993; Gardner et al., 2005). In the
adaptation-free condition, participants were not presented with an initial
adaptation block, mirroring the lack of any top-up adaptation stimulus
during the fast event-related block null periods. For all experiments, the
beginning of each experimental run began with a 30 s baseline period,
during which participants viewed a uniform gray background (194.7 cd/
m2). Participants completed three to five adaptation runs (8.5 min each,
510 TRs), and three to four no-adaptation runs (7.5 min each, 450 TRs),
with six observations per stimulus contrast level collected per run.

For all fMRI experiments, participants fixated on a red dot at the cen-
ter of the display (diameter, 0.11°) while being engaged in a rapid visual
stream presentation (RSVP) task also located at fixation. The RSVP task
consisted of a rapid sequential presentation of letters (35 point size),
with target letters appearing with a 30% probability every 250ms, after a
minimum of 10 nontarget letters following the last target letter presenta-
tion. An MR-compatible response box was used to record behavioral
responses to the RSVP task. Participants maintained high performance
accuracy across all runs in both experiments (experiment 1, 97.4%;
experiment 2, 98.1%).

MRI data acquisition. All neuroimaging data were collected on a
research-dedicated Siemens Prisma 3T scanner using a 64-channel head
coil. Whole-brain anatomic data were acquired using a T1-weighted
multiecho MPRAGE 3D sequence (1mm3; FOV = 256 � 256 � 176
mm; flip angle (FA) = 7°; TR = 2530 ms; TE = 1.69ms; van der Kouwe et
al., 2008). All functional neuroimaging data (main experiments and pRF
mapping) were acquired using a T2*-weighted in-plane simultaneous
multislice imaging sequence (multiband factor, 3; Moeller et al., 2010;
Xu et al., 2013), with the field of view oriented perpendicular to the cal-
carine sulcus (2 mm3; FOV = 60� 112 � 172 mm; FA = 80°; TR = 1000
ms; TE = 35 ms).

Anatomical data analysis. Whole-brain T1-weighted anatomic data
were analyzed using the standard recon-all pipeline provided by the
FreeSurfer (Fischl, 2012) neuroimaging analysis package, generating
cortical surface models, whole-brain segmentations, and cortical parcel-
lations. Cortical surface models facilitated surface-based registration
between structural and functional MRI volumes, allowing pRF analyses
to be conveniently ported over to the native functional volume space.

Functional data analysis. EPI distortion correction was applied to all
fMRI BOLD time series data using a reverse phase-encode method
(Andersson et al., 2003) implemented in Functional MRI of the Brain
Software Library (Smith et al., 2004). All fMRI preprocessing steps were
completed with FreeSurfer Functional Analysis Stream (Fischl, 2012),
including standard motion-correction procedures, Siemens slice timing
correction, and boundary-based registration (Greve and Fischl, 2009)
between functional and anatomic volumetric spaces. To facilitate voxel-
wise analyses, no volumetric spatial smoothing was performed (FWHM
= 0 mm). Precise volumetric alignment of experimental condition data

within each neuroimaging sessions was achieved using cross-run within-
modality robust rigid registration (Reuter et al., 2010), with the middle
time point of the first run from each session serving as the target volume,
and the middle time point of each subsequent run from the session serv-
ing as the movable volume used for alignment. Before converting BOLD
time series data to units of percent signal change, time points corre-
sponding to the initial adaptation period (60 frames) were excluded
when applicable. Data collected during the separate pRF mapping ses-
sion were analyzed using the analyzePRF toolbox (Kay et al., 2013). Only
voxels located within the cortical ribbon of the occipital lobe were desig-
nated for pRF modeling, which were identified using a visual area net-
work label generated using an intrinsic functional connectivity atlas
(Yeo et al., 2011).

For all fMRI experimental conditions, a univariate deconvolution
analysis was conducted using a finite-impulse response (FIR) modeling
approach (window size = 24 s, prestimulus delay = 4 s; Dale, 1999). This
analysis provided a set of 24 b -weight parameters describing the time
course of the BOLD response for each contrast level under investigation.

Voxel selection. The results from the pRF mapping were used to
determine voxel selection within each region of interest (ROI). The pRF
results were used to define the boundaries of all early visual areas (V1–
V3), and identify candidate voxels within each visual area having eccen-
tricity preferences bounded by stimulus dimensions (inner diameter,
0.7°; outer diameter, 9.1°). The pRF data for one participant were
acquired with a slightly constrained visual angle, limiting reasonable ec-
centricity estimates, so the outer diameter limit for this participant was
set to 8.9° during voxel selection. ROI labels were further constrained by
excluding voxels with poor pRF modeling goodness of fit (r2 , 20%),
and unreasonably small population receptive field (RF) sizes (RF ,
0.1°). Subsequently, for each participant within each experiment, the
ROI-averaged deconvolution time course (FIR function) for the highest
contrast condition (96%) was fit with a four-parameter Gaussian func-
tion for each early visual area (V1–V3). The mean and SD of the residual
sum of squares when fitting the highest contrast condition with the
Gaussian function was equivalent across adaptation (V1. 0.21 6 0.08;
V2, 0.15 6 0.07; V3, 0.13 6 0.08) and no adaptation conditions (V1,
0.226 0.05; V2, 0.126 0.06; V3, 0.106 0.05). The best-fitting Gaussian
function describing the ROI-averaged FIR function was then adjusted
using linear regression (unbounded offset and amplitude scalar parame-
ters) to best match the FIR function of each individual voxel contained
within the ROI (96% contrast condition only). At the conclusion of this
fitting procedure, the voxelwise goodness-of-fit (r2 coefficient) was then
used to create a metric ranging from 0 (worst fit) to 1 (best fit) for all
voxels in each ROI. Voxels within each ROI were ranked according to
their goodness-of-fit metric, with the top 40% selected for further analy-
sis. Importantly, voxels with a high goodness-of-fit metric solely indi-
cates that these particular voxels had a strong stimulus-evoked response
to the highest contrast level, which was well described by a Gaussian

Figure 1. Measuring nonlinear contrast response functions using contrast adaptation and informed stimulus design. a, Cortically magnified stimulus. Experimental stimulus composed of gra-
tings with radial orientations (relative to fixation) and cortically magnified spatial frequency (actual stimulus spatial frequency not depicted). b, Example adaptation and fast event-related fMRI
run. Time line and organization of typical fMRI run for experiment 1, consisting primarily of fast event-related stimulus presentations (2 s duration) at multiple Michelson contrast levels, inter-
leaved with the 16% contrast adapter stimulus to maintain adaptation throughout the entirety of each run. Each run began with a 30 s blank fixation baseline period (highlighted in green),
followed by a 60 s sustained adaptation period (highlighted in orange) to promote contrast response homogeneity. For experiment 2, the initial adaptation period was not included, and inter-
leaved contrast adapter stimulus presentation during the fast event-related period was replaced with blank fixation epochs.
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function. This metric does not take into account the evoked responses at
any other contrast level (,96%); thus, it serves as a voxel selection
method that is agnostic to the overall qualitative shape of the contrast
response function. Finally, any voxels with a maximal BOLD response
exceeding 10% signal change were excluded in an effort to only include
voxels with responses not attributable to draining vein hemodynamics,
which are known to be significantly delayed in time relative to cortical
gray matter (Lee et al., 1995) and are mainly expected to occur at the
foveal confluence (Winawer et al., 2010). On average, this exclusion con-
stituted ,2% of all voxels across all participants. The total number of
voxels (mean 6 SEM across participants) that survived these selection
criteria, after combining across left and right hemispheres, were as fol-
lows: experiment 1, V1, 209.6 6 26.4; V2, 217.0 6 20.6; V3, 207.8 6
13.0; and experiment 2, V1, 265.8 6 45.1; V2, 255.2 6 35.8; V3, 223.3
6 25.2.

Contrast response estimation. Final contrast response estimations
were calculated by taking the average of the FIR modeling deconvolution
b weights over a fixed and absolute window spanning 3 to 9 s poststi-
mulus onset. These b weights were averaged together to produce a con-
trast response measurement for each of the nine contrast levels under
investigation in each experiment. These contrast responses were used to
create both ROI-specific and voxelwise response functions, which were
then subjected to further analyses.

Model fitting and evaluation. To evaluate the degree to which con-
trast response functions are truly nonlinear in nature, the explanatory
power of two different models were compared following a partially
bounded least-squares fitting procedure in MATLAB (fmincon). The
Naka–Rushton (NR) equation (Naka and Rushton, 1966) was selected as
the candidate nonlinear function model as follows:

R Ið Þ ¼ Rmax � In

In 1C50
n
;

with Rmax, C50, and n corresponding to the maximal contrast
response, semisaturation response, and overall rate of change (trans-
ducer), respectively. The upper bound of the maximal contrast response
(Rmax) was unconstrained, [0 Inf], whereas both the semisaturation
response and transducer parameters were bounded respectively at [1
100] and [0 10]. Conversely, any linear tendencies of the contrast
response functions were determined using a purely linear equation (2
unconstrained parameters; y-intercept and slope). Before any model fit-
ting, all contrast responses were shifted by the mean response across the
lowest three contrast levels (2.67, 4, and 5.33) at the ROI level to shift the
response function baseline relative to zero. Following this baseline cor-
rection, the mean range and SD of BOLD activation was equivalent
across adaptation (V1, 2.966 0.51; V2, 2.176 0.21; V3, 1.666 0.39) and
no adaptation (V1, 2.406 0.54; V2, 1.616 0.59; V3, 1.156 0.43) experi-
mental conditions and regions of interest. The contrast responses plotted
in all result figures represent the baseline corrected BOLD response.

Statistical analyses. To identify the best-fitting model while also con-
sidering respective degrees of freedom, given the number of free parame-
ters, the corrected Akaike information criterion (AICc) was computed
for nonlinear and linear models (Banks and Joyner, 2017). A lower AICc

score reflects a better dataset fit while penalizing for the number of free
model parameters. The AICc difference between both candidate models
was calculated (NR–linear), with negative values indicating the NR equa-
tion as the better fitting model and positive values indicating the linear
equation as the better fitting model. We chose this approach because we
are interested in comparing non-nested models using a metric derived from
information theory, in which case statistical hypothesis testing (F tests) is
not a viable approach (Motulsky and Christopoulos, 2004). Note that all
reported AIC scores with model subscripts are also corrected AIC scores.

To assess the heteroscedasticity of model residuals, specifically
whether the model prediction errors vary systematically (nonrandomly)
across consecutive independent variable levels, a Durbin–Watson test
statistic was calculated. Here, the statistic quantifies the prevalence of
any lag 1 autocorrelation of residuals across successive contrast levels,
with a groupwise Durbin–Watson d test statistic ,1.5 signifying a posi-
tive autocorrelation. One-way between-subjects ANOVAs were

performed to test for any differences in Naka–Rushton model parameter
estimates across regions of interest and to test for any systematic differ-
ences in functional signal-to-noise ratio (SNR) measurements across
regions of interest for both experiments 1 and 2. Significant effects were
further investigated using pairwise t tests using Bonferroni correction.
Significant monotonic trends between eccentricity preference, pRF size,
and Naka–Rushton parameter estimates at the voxelwise level were eval-
uated using Spearman’s correlations (rs), with the correlations computed
independently for each participant before being subjected to one-sample
t tests using the Bonferroni correction to test whether the average corre-
lation coefficient (rs) across participants is significantly different from
zero (no correlation).

Voxelwise functional SNR measurements were calculated based on the
mean signal offset divided by the SD of the residuals following FIR model
fitting. Specifically, the residuals reflect the difference between the esti-
mated and actual BOLD time courses, and this method for estimating
functional SNR is independent of any task signal and nuisance regressors.

Data availability. All fMRI datasets reported in this study, as well as
all MATLAB code used for stimulus presentation and data analysis, are
available at https://osf.io/8g6ap/.

Results
Sustained adaptation promotes nonlinear contrast responses
Does prolonged and sustained contrast adaptation promote non-
linear contrast response functions? We first measured the BOLD
response evoked by nine different luminance contrast stimuli
(Fig. 1a) following adaptation to a low-contrast level (Fig. 1b; see
above, Materials and Methods). We then measured the BOLD
response to the same contrast-varying stimuli again, but crucially
this second experiment did not include sustained contrast adap-
tation. In both experiments, we performed a deconvolution anal-
ysis to obtain an average BOLD response for each contrast level
under investigation. The ROI-averaged contrast responses col-
lected following sustained contrast adaptation (experiment 1) are
qualitatively different when compared with contrast responses
collected in the absence of constrained contrast adaptation
(experiment 2) across early visuocortical areas (example partici-
pant depicted in Fig. 2a).

To evaluate the degree to which sustained contrast adaptation
promotes nonlinear population responses, we computed an
ROI-averaged AICc metric that allowed for the comparison
between model fits of a Naka–Rushton (nonlinear) and a linear
model (Fig. 2b). Under contrast adaptation, AICc differences
between the two models (AICNaka-Rushton and AICLinear),
reported below as mean 6 SE across participant, favored the
Naka–Rushton model across all early visual areas (V1, �1.41 6
1.43; V2, �0.74 6 0.92; V3, �0.10 6 0.69). In the absence of
constrained contrast adaptation, AICc differences instead favored
the linear model across all early visual areas (V1, 2.63 6 0.52;
V2, 2.646 0.32; V3, 2.64 6 0.11). Furthermore, the general jux-
taposition of linear versus nonlinear response functions remains
prevalent at the voxelwise level when comparing across adapt
and no adapt conditions, respectively (Fig. 2c). Overall, this pat-
tern of results demonstrates the profound impact that adaptation
can have in shaping contrast response functions acquired with
population-based measurements.

To better assess the heteroscedasticity of the model fitting
across conditions, the model prediction errors (residuals) were
plotted as a function of contrast level (Fig. 3) and compared
using the Durbin-Watson autocorrelation test (DWd), with a
DWd , 1.5 signifying a positive lag 1 autocorrelation. In the
presence of adaptation, the linear function systematically failed
to capture the variance across the midrange contrast levels,
resulting in a positive autocorrelation across residuals for all
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ROIs (DWd (V1) = 0.95, DWd (V2) = 1.09, DWd (V3) = 0.95),
indicating that a linear function does not adequately describe
the pattern of contrast responses measured in experiment 1.
Conversely, the prediction error of the Naka–Rushton function
lacks this systematic bias and does not display any autocorrela-
tion across residuals for all ROIs (DWd (V1) = 1.91, DWd (V2) =
2.34, DWd (V3) = 2.22), indicating that an inherently nonlinear
function is necessary for describing the pattern of contrast
responses measured in experiment 1. In the absence of con-
strained adaptation, however, both models displayed little to no
systematic biases, with the linear model residuals having the
weakest overall tendency toward a positive autocorrelation (lin-
ear model: DWd (V1) = 1.91, DWd (V2) = 1.58, DWd (V3) =
1.72), and the Naka–Rushton model only having a slight bias in
area V1 (Naka–Rushton model: DWd (V1) = 1.25, DWd (V2) =
1.72, DWd (V3) = 1.52).

Voxelwise contrast response functions: Heterogeneity and
trends within regions of interest
To ascertain the degree of heterogeneity within an ROI, contrast
response functions were evaluated on a voxelwise basis. An NR
equation was fit to voxelwise contrast responses only for

experiment 1, where it was demonstrated that adaptation is
required to capture the nonlinearity of the population response.
The median estimated model parameters at the voxelwise level
were computed for each participant, which were then averaged
within each ROI across all participants, producing three parame-
ters of interest (Fig. 4), reported below as mean6 SE across par-
ticipants. The semisaturation constant estimate (C50) remained
relatively stable and low across ROIs (V1, 42.09 6 5.75; V2,
40.02 6 4.61; V3, 47.05 6 5.30), reflecting the sustained low-
contrast adaptation at 16% Michelson contrast, with no main
effect of ROI (F(2,21) = 0.47, p = 0.628). The transducer estimate
(n) increased in steepness from striate to extrastriate ROIs (V1,
2.21 6 0.20; V2, 3.12 6 0.24; V3, 3.64 6 0.42), confirmed by a
main effect of ROI (F(2,21) = 5.64, p = 0.011), with significant dif-
ferences between V1 versus V2 (t(7) = �3.85, pcorrected = 0.019)
and V1 versus V3 (t(7) = �4.18, pcorrected = 0.012) but not
between V2 versus V3 (t(7) = �2.13, pcorrected = 0.212). Finally,
the response saturation level (Rmax) decreased in magnitude
from striate to extrastriate ROIs (V1, 2.97 6 0.36; V2, 1.89 6
0.11; V3, 1.466 0.13), confirmed by a main effect of ROI (F(2,21)
= 11.67, p, 0.001), with significant differences between V1 ver-
sus V2 (t(7) = 3.53, pcorrected = 0.029), V1 versus V3 (t(7) = 5.83,

Figure 2. Sustained adaptation promotes nonlinear contrast responses within and across human visual cortex. a, Contrast response functions for example participant. ROI-averaged contrast
response (mean BOLD percent signal change after baseline correction) of a representative participant plotted as a function of log-spaced Michelson contrast for each region of interest (V1–V3)
for both adaptation (red circle) and no adaptation (blue square) conditions. Solid lines reflect the best-fit model (Naka–Rushton or linear function) for each respective experimental condition.
Before fitting, all contrast responses were shifted by the mean response across the lowest three contrast levels at the ROI level to center the response function baseline around zero. Vertical
dashed lines represent the 16% Michelson contrast level, corresponding to the adapter stimulus contrast level. Data are means6 half the SD across voxels. b, Model fit comparison. Individual
and group-averaged voxelwise differences of the corrected AICc, comparing Naka–Rushton model fits to linear model fits for each region of interest and for both adaptation (red circle) and no
adaptation (blue square) conditions. Negative values indicate the Naka–Rushton model is the most likely function to have generated the observed contrast responses. Small symbols with
dashed lines denote individual participants (means6 SE across all voxels), and large symbols outlined in black denote group-averaged AICc difference scores (means6 SE across all partici-
pants). c, Voxelwise contrast response functions within area V1. Common patterns of contrast responses observed across experimental conditions at the voxelwise level within area V1 for the
individual participant depicted in a. All voxels depicted survived cross-session registration and label transformation, and had,1° absolute difference in pRF eccentricity estimates across ses-
sions. All data plotted using the same conventions as described in a.
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pcorrected = 0.002), and V2 versus V3 (t(7) = 4.81, pcorrected =
0.006). Finally, the significant differences observed across ROIs
(V1–V3) are not simply because of monotonic changes in func-
tional SNR (see above, Materials and Methods) across the visual
hierarchy (F(2,21) = 0.25, p = 0.777). In general, the different pat-
terns of transducer and response saturation estimates across the

visuocortical hierarchy reflect hallmarks of nonlinear contrast
response functions previously reported in the literature (Levitt et
al., 1994; Avidan et al., 2002), whereas the consistent semisatura-
tion estimates across early visual areas seen here are analogous to
those of previous reports (Albrecht and Hamilton, 1982; Sclar et
al., 1990).

Figure 4. Voxelwise Naka–Rushton model parameter estimates (adaptation condition). Individual and group-averaged voxelwise Naka–Rushton function parameter estimates describing
contrast responses following adaptation for each region of interest (V1–V3). Colored circles identify the median voxelwise parameter estimate for each individual participant, whereas gray
circles denote the group-averaged parameter estimates (means6 SE). Note that semisaturation estimates are plotted on log scale, with the dashed line corresponding to 16% Michelson con-
trast. Asterisks denote significant t test results (*pcorrected , 0.05, **pcorrected , 0.01).

Figure 3. Systematic bias of model fit residuals; linear model inadequate with adaptation. a, Adaptation model fit heteroscedasticity. Individual and group-averaged model fit residuals plot-
ted as a function of contrast level (log spaced) for both Naka–Rushton and linear model fits across regions of interest for data acquired following adaptation (experiment 1). Each plot depicts
the prevalence of any systematic bias in model fits (heteroscedasticity). The mean sum of the squared error (6 SE) across all participants is reported above each respective plot. b, No adapta-
tion model fit heteroscedasticity. Model fit residuals for data acquired in the absence of constrained adaptation (experiment 2). All results plotted using the same conventions as described in a.

Vinke, Bloem et al. · Adaptation Facilitates Nonlinear Responses J. Neurosci., February 16, 2022 • 42(7):1292–1302 • 1297



Although the semisaturation constant
estimates at the participant level did not
vary across the visual hierarchy (Fig. 4),
several interesting trends were found at the
voxelwise level. Semisaturation constant
estimates displayed a significant mono-
tonic Spearman’s correlation with the dis-
tance of the preferred visual field location
from fixation (eccentricity), being esti-
mated by the pRF method, within each
early visual area (V1–V3; V1, rs = 0.35 6
0.06, t(7) = 5.82, pcorrected , 0.001; V2, rs =
0.41 6 0.06, t(7) = 7.03, pcorrected , 0.001;
V3, rs = 0.286 0.06, t(7) = 4.94, pcorrected =
0.005). Voxelwise semisaturation constant
estimates were also found to be positively
correlated with response saturation level
(V1, rs = 0.36 6 0.05, t(7) = 7.72, pcorrected
, 0.001; V2, rs = 0.20 6 0.05, t(7) = 3.95,
pcorrected = 0.017; V3, rs = 0.34 6 0.03,
t(7) = 9.96, pcorrected , 0.001), and nega-
tively correlated with transducer steepness
(V1, rs = �0.49 6 0.04, t(7) = �11.85,
pcorrected , 0.001; V2, rs = �0.32 6 0.05,
t(7) = �6.69, pcorrected , 0.001; V3, rs =
�0.26 6 0.05, t(7) = �5.05, pcorrected =
0.005) consistently for all early visuocorti-
cal areas (Fig. 5a,b). However, the eccen-
tricity bias did not generalize in the same
consistent manner to any other voxelwise
Naka–Rushton parameter estimates, with
response saturation level displaying only a
negative eccentricity bias in area V2 (V1,
rs = �0.026 0.05, t(7) = �0.37, pcorrected =
1; V2, rs = �0.15 6 0.04, t(7) = �3.71,
pcorrected = 0.023; V3, rs = �0.05 6 0.04,
t(7) = �1.45, pcorrected = 0.573) and trans-
ducer steepness only displaying a positive
eccentricity bias in area V3 (V1, rs =
0.004 6 0.06, t(7) = 0.06, pcorrected = 1; V2,
rs = 0.126 0.04, t(7) = 3.00, pcorrected = 0.06;
V3, rs = 0.166 0.05, t(7) = 3.23, pcorrected =
0.043), although response saturation level
and transducer steepness estimates did dis-
play a strong negative correlation with
each other across all early visuocortical
areas (V1, rs =�0.496 0.04, t(7) =�12.08,
pcorrected , 0.001; V2, rs = �0.47 6 0.06,
t(7) = �8.51, pcorrected , 0.001; V3, rs =
�0.47 6 0.06, t(7) = �8.08, pcorrected ,
0.001). On average across participants,
15.5% of voxels within each ROI were
found to have bounded semisaturation
constant estimates at or near 100% con-
trast. Despite bounded fitting, these voxels
were not excluded because they had reli-
able pRF estimates and survived the voxel
selection procedure, and the exclusion of these particular voxels
does not alter the general pattern of results. Specifically, excluding
these bounded voxels (C50. = 99) did not significantly alter the AICc
difference scores for each ROI within the contrast adaptation condition
(V1, �1.40 6 1.47, t(7) = 0.05, pcorrected = 1; V2, �0.86 6 0.96, t(7) =
�1.89, pcorrected = 0.302; V3,�0.156 0.73, t(7) =�0.81, pcorrected = 1).

When averaging the voxelwise contrast responses coarsely
binned by eccentricity, it becomes apparent that the population-
based CRFs are centered at progressively higher contrast levels as
the preferred visual field location shifts farther away from fixation
(Fig. 5c). It has been well established that RF size and eccentricity
preference strongly covary with one another in early visuocortical
areas (Dow et al., 1981; Smith et al., 2001; Harvey and Dumoulin,

Figure 5. Voxelwise contrast response functions, heterogeneity, and trends within region of interest. a, Voxelwise eccentric-
ity bias. Log–log scatter plots depicting voxelwise semisaturation parameter estimates covarying with visual field eccentricity
preference, which corresponds to the pRF estimate of the response field center (in degrees of visual angle radiating out from
fixation) for each respective voxel included in each ROI analysis. Data point color scale depicts the corresponding response satu-
ration (Rmax) parameter estimate for each particular voxel being plotted. Black circles denote binned group-averaged median
parameter estimates. Error bars were asymmetric and uninformative when plotted on a log scale and have been omitted. Black
dashed lines correspond to 16% Michelson contrast. b, All data plotted using the same conventions as described in a, with the
exception that the data point color scale depicts the corresponding transducer (n) parameter estimate for each particular voxel
being plotted. c, Groupwise eccentricity bias. Mean eccentricity-based contrast responses (BOLD percent signal change after
baseline correction) of each participant plotted as a function of log-spaced Michelson contrast for each region of interest (V1–
V3). Each respective solid-colored line reflects the best-fit Naka–Rushton function to the group-averaged contrast responses
within each mutually exclusive eccentricity range defined by the colored brackets in a and b. All individual participant contrast
responses within each eccentricity range are plotted in low opacity. Triangle symbols denote the value of the semisaturation
parameter estimate for each respective eccentricity range.
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2011). If the interaction between semisaturation constant estimates
and eccentricity reported above is not a spurious finding, semisatu-
ration constant estimates should also covary with population RF
size within each ROI, which was found to be the case (V1, rs = 0.20
6 0.04, t(7) = 5.43, pcorrected , 0.001; V2, rs = 0.29 6 0.05, t(7) =
6.34, pcorrected , 0.001; V3, rs = 0.23 6 0.05, t(7) = 5.20, pcorrected =
0.004). However, although both sets of correlations are significant,
these findings indicate that additional factors in addition to eccen-
tricity and RF size contribute to the variation of semisaturation con-
stant estimates we observed within human visual cortex. No
consistent RF size biases were found for response saturation level
(V1, rs = 0.096 0.05, t(7) = 1.85, pcorrected = 0.321; V2, rs =�0.016
0.04, t(7) = �0.32, pcorrected = 1; V3, rs = �0.04 6 0.04, t(7) �1.05,
pcorrected = 0.986) and transducer steepness (V1, rs = �0.036 0.05,
t(7) =�0.68, pcorrected = 1; V2, rs = 0.066 0.05, t(7) = 1.35, pcorrected =
0.662; V3, rs = 0.146 0.04, t(7) = 3.24, pcorrected = 0.043), congruent
with the pattern of eccentricity bias results reported above.

Discussion
Although nonlinearities have often been considered a trademark
property of neural responses, functional neuroimaging measures
of response profiles have tended to appear puzzlingly linear. In
this study, we find evidence to suggest that sustained adaptation
plays a key role in promoting nonlinear population-based con-
trast response functions in the human visual cortex. The Naka–
Rushton parameter estimates we obtained are coincident with
previous reports of contrast response variability across the visual
hierarchy. Crucially, a linear function proved to be inadequate in
capturing the pattern of population-based contrast responses,
highlighted by a systematic fitting bias across contrast levels. In
the absence of constrained contrast adaptation, a qualitatively
different pattern of contrast responses was observed, best cap-
tured by a linear model, consistent with the bulk of previous
population-based contrast responses measured in humans
(Tootell et al., 1995, 1998; Boynton et al., 1996, 1999; Buracas et
al., 2005; Buracas and Boynton, 2007; Murray, 2008; Pestilli et
al., 2011; Itthipuripat et al., 2019).

How might constrained adaptation have such a profound
effect on contrast responsivity in early visual cortex? Adaptation

is a naturally occurring everyday phenomenon, con-
stantly operating to reflect statistical regularities in our
environment and helping to maintain high sensitivity
within a particular stimulus range (Clifford et al., 2007;
Kohn, 2007). In the visual modality, contrast adapta-
tion has been shown to alter perception in systematic
ways, improving sensitivity within the adapted range
(Foley and Boynton, 1993). At the neural level, con-
trast adaptation serves to recenter the response profiles
of individual units toward the average contrast level of
the visual environment (Ohzawa et al., 1985; Sclar et
al., 1989; Carandini and Ferster, 1997) within a rela-
tively short period of time (30–60 s; Blakemore and
Campbell, 1969; Movshon and Lennie, 1979; Albrecht
et al., 1984; Gardner et al., 2005). The population
response captured by the fMRI BOLD signal encom-
passes quite a large number and variety of neurons
with a broad heterogeneity of nonlinear response pro-
files known to be present at this submillimeter level
(Albrecht and Hamilton, 1982; Sclar et al., 1990).
Recalibration during adaptation may serve to reduce
this neural response heterogeneity within local neural
populations insomuch as to preserve the nonlinear
response properties even after pooling across the popu-

lation. Indeed, it has been demonstrated that in the absence of
any explicit adaptation, averaging over a heterogeneous neural
population can aggregate a multitude of nonlinear neural con-
trast response functions into a qualitatively different population
response within both experimental (Albrecht and Hamilton,
1982) and modeling (Hara et al., 2014) contexts. Therefore, by
bringing the sensitivity of a heterogenous array of nonlinear
response functions into closer alignment, subsequent population
response measurements, such as fMRI, may then summarize a
more homogenous population response, capturing a nonlinear
representation of the underlying neural units (Fig. 6).

As adaptation is an ongoing process, it is worthwhile to con-
sider what recalibration was taking place in the absence of any
constrained contrast adaptation. One consideration is that by
removing the initial adaptation period to the 16% contrast stimu-
lus and presenting a mean gray blank fixation (0% contrast) dur-
ing interleaved periods, the average contrast level encountered
throughout a single functional run was much lower than 16%.
Having adapted to a lower contrast level under unconstrained
adaptation settings, one would expect response functions to have
shifted even farther to the left relative to the response functions
we observed following adaptation to 16% contrast. However, this
was not what we observed, instead finding nonsaturating
response functions largely centered at higher contrast levels, sug-
gesting a qualitatively different contrast responsivity change is
occurring after prolonged viewing consisting mainly of uniform
and diffusely illuminated stimuli (0% contrast). Additionally, we
observed a general reduction in responsivity at high contrast lev-
els in the absence of adaptation, which suggests processes
other than contrast sensitivity were being altered during ad-
aptation. Previous modeling work has linked intracortical in-
hibition to changes in response saturation (Todorov et al.,
1997), with lower Rmax estimates expected when adapting to
progressively higher contrast levels, which has previously
been shown to be the case in cat striate cortex (Albrecht et
al., 1984). However, if the unconstrained adaptation condi-
tion is considered as having induced adaptation to a contrast
level lower than 16%, given the average stimulus contrast
level encountered throughout any given run, then our results
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Figure 6. Contrast gain changes reducing neural response heterogeneity to produce a nonlinear popula-
tion contrast response function. Conceptual illustration demonstrating how sustained contrast adaptation
potentially induces nonlinear population contrast response functions by bringing individual neural units
within the population into closer alignment via contrast gain changes (e.g., horizontal shifts).
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demonstrate the opposite relationship. This contradiction
suggests that it may be misleading to classify a uniform and
diffusely illuminated stimulus as being 0% contrast and that
this extreme contrast level should not be treated the same as
nonzero contrast level stimuli. Suffice it to say, the effects of con-
trast adaptation may well extend beyond straightforward contrast
sensitivity changes, with further experimental evidence needed to
clarify exactly how, and under what conditions, various gain con-
trol processes interact with one another.

Undoubtedly, another important contribution to the contrast
response nonlinearities we report is the use of an event-related
experimental design rather than a blocked design. The latter
design type has considerable downsampling and hysteresis cav-
eats that are detrimental to capturing nonlinear contrast
responses. When taking the block-averaged BOLD response to
represent a particular contrast response, the average of the entire
decaying BOLD time series within the block is not necessarily
analogous to the evoked response for any particular stimulus
condition when the contrast response nuances are most preva-
lent as the initial evoked response at the beginning of each block.
Improvements in modeling BOLD response variability measured
with blocked designs has been reported when including a decay-
ing exponential function for neural response during each stimu-
lus block (Boynton et al., 1996), or when using a sinusoidal
period instead of a square wave to model ON/OFF stimulus peri-
ods (Boynton et al., 1999; Buracas et al., 2005). Additionally, in
some instances the block-averaged response to a low-contrast
stimulus may be overwhelmingly negative relative to initial base-
line if that particular block is preceded by a stimulus block dur-
ing which adaptation to a significantly higher contrast level has
occurred. Stimulus differences between our study and other
event-related fMRI studies highlight other potential contribu-
tions to the overall potency and breadth of activity we see within
early visual areas. Crucial stimulus properties include stimulus
position (peripheral vs centered at fixation), overall size, spatial
frequency (fixed vs cortically magnified), and local orientation
relative to the visual meridians and fixation (radial orientation
bias; Sasaki et al., 2006; Mannion et al., 2010; Freeman et al.,
2011).

These aforementioned methodological concerns are not only
relegated to fMRI-based population measurements of responses;
indeed, they generalize to many measures, and in particular any
population-based measure that succumbs to these pitfalls can
misleadingly produce linear results. Optical imaging spectros-
copy is an alternate population-based measurement of brain
function operating at higher temporal resolutions while also
being based on changes in hemodynamics and blood oxygen-
ation levels (Malonek and Grinvald, 1996). Contrast response
function obtained in animals using optical imaging have resulted
in reports of largely linear response profiles in areas V1 and V2
for both cats (Carandini and Sengpiel, 2004; Zhan et al., 2005)
and nonhuman primates (Lu and Roe, 2007). It remains to be
clearly seen whether contrast adaptation can also alter the con-
trast response function measured in optical imaging studies,
although some insight is provided by studies examining orienta-
tion tuning under different adaptation states across very few con-
trast levels (Dragoi et al., 2000; Sengpiel and Bonhoeffer, 2002).

Electroencephalography (EEG) offers a qualitatively different
measure of neural population activity, based largely on electrical
activity generated from postsynaptic potentials located within
cortical layers oriented parallel to electrodes on the scalp (da
Silva, 2013). Despite having a coarser spatial resolution, nonlinear
contrast responses are relatively common in the literature

(Reynolds et al., 2000; Di Russo et al., 2001; Itthipuripat et al.,
2019). However, it is likely that these EEG results reflect a bi-
ased, narrower sample of population activity, driven by a
handful of focally potent signals because of intraregional
cortical folding and stimulus feature preferences, and de-
pendent on particular event-related potential components,
frequency band (Kappenman and Luck, 2016; Hermes et al.,
2017), or the source-localization technique used (Grech et
al., 2008). Finally, studies are beginning to reveal that the
neurovascular coupling between BOLD response and neural
activation is a dynamic relationship that can be systemati-
cally altered across stimulus intensity (i.e., contrast; Liang
et al., 2013), stimulus duration (Boynton et al., 1996;
Thompson et al., 2014), and stimulus flicker frequency (Lin
et al., 2008). Although these changes in neurovascular cou-
pling may have been at play in the given study, they would
have been consistent across both experimental conditions
and cannot account for the impact of adaptation on con-
trast response nonlinearities.

Achieving an accurate portrayal of the various ongoing non-
linear gain control operations (i.e., arousal and attention) may
ultimately require leveraging what we already know about other
properties of the human CNS. When measuring population-
based activity, presenting weak or nonpreferred stimuli may not
be sufficient for a complete response profile to emerge. Going
forward, careful consideration of stimulus properties and incor-
porating sustained adaptation into experimental designs will
allow for more robust computational modeling by using data
from both animal and human findings, as well as being able to
capture functional variability across multiple spatial scales of
measurement. By acquiring a comprehensive understanding of
how the human brain adapts and responds to the environment,
we can better discern the local and global neural circuitry sup-
porting human sensation and perception.
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