Divisive normalization accounts for temporal dynamics in somatosensory cortex
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IEEG data of 12 electrodes in V1
(Groen et al., 2022, J.Neurosci)

Temporal dynamics in vision
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Research question
Do principles of temporal dynamics observed In visual
cortex also apply to somatosensory cortex”?

We measured somatosensory cortex responses by fMRI
and IEEG using the same stimuli
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Vibrotactile stimulation (110 Hz carrier)
presented to all five fingers

Single-pulse conditions  Double-pulse conditions

@ 2 0
§0.05 1 S 0.05 I
s 0.1 2 0.1
S 0.2 o 0.2
S 04 > 04
g 0.8 = 0.8
h 1.2 5 1.2

MR-safe piezoelectric tactile stimulator (Dancer Design) 0.2 s pulses

fMRI

Estimate BOLD time-courses by
deconvolution from 6 participants

intracranial EEG (IEEG)

Extract envelope of broadlband power from electrodes
IN somatosensory cortex from 2 patients

G;) g Stimulus
S & 300 |
L
> T(_Q O 200 ¢
8T q40p} Neural response
O o~
S 0 0.4
Union of finger-selective ROIs in ST m S Time (9)

, llona M. Bloem'*, Stephanie Badde®, Wouter Schellekens®, Natalia Petridou®, Michael S. Landy'<, Jonathan Winawer' <
Psychology, New York University, 2Center for Neural Science, New York University, °“Netherlands Institute for Neuroscience, “Department of

Delayed-normalization model

169.13

% B

UMC Utrecht NYU

NYU
SCHOOL OF
I\/IEDICINE

Psychology, Tufts University, *University Medical Center Utrecht

Linear model

Free parameters Free parameters

rectify +
exponentiate f | normalization IRF Low-pass filter Stimulus (.5) Neural response IRF
. > — h : h - convolve h :
1\71 2\T2 ). T
Stimulus (S) convolve | ‘L‘n S | Neural response ( ) ( ) ith IR ﬂ 1( 1)
with IRF ‘ >
" ﬂ Q > k \ . Sxhy = \
. L =5%xhy - ~ Time (ms) Time (ms)
Time (ms) Time (ms) . : . . .
, / Time (ms) Time (ms) Time (ms)
o -+ ‘L * hz‘n : :
O . semi-saturation constant :
low-pass filter + (Heeger 1992, Vis Neurosci n: exponent Cross-validated R*
tiate Zheoeuggt al 2(3198 Pfgsoé%mp Bio.) P #Electrod Delayed Li
Sxponen "’ | o SCtrodes normalization near
iIEEG better fit by the delayed lizati del th cawemt T 1 0855 0555
| responses are better fit by the delayed-normalization model than ationt 2 o oo e
the linear model
Single-pulse conditions
Stimulus Transient
—Neural response 400~ 4/
— Linear prediction Sustained
. —Delayed-normalization 200~ / Hstaine
G;J L prediction
O € O "VVVJ !ﬂf"l
QE | | | | |
- [ Double-pulse conditions Recovery from
% D adaptation
T D 400- Adaptation /
S X2
m <
200 /
0 -t M gl

o 1 2

Can we predict fMRI BOLD response
amplitudes to the same stimuli
with the same model?
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Conclusions
- Temporal dynamics are similar in visua

- Divisive normalization with a delay cap

measured by fMRI and IEEG.

‘ures temporal dynamics in both sensory cortices

Tlme |EEG data from Patlent 1

fMRI BOLD responses are well captured by the scaled
model prediction based on IEEG data
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