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Abstract

Normalization within visual cortex is modulated by contextual influences; stimuli sharing similar features suppress each other
more than dissimilar stimuli. This feature-tuned component of suppression depends on multiple factors, including the orientation
content of stimuli. Indeed, pairs of stimuli arranged in a center-surround configuration attenuate each other’s response to a
greater degree when oriented collinearly than when oriented orthogonally. Although numerous studies have examined the na-
ture of surround suppression at these two extremes, far less is known about how the strength of tuned normalization varies as a
function of continuous changes in orientation similarity, particularly in humans. In this study, we used functional magnetic reso-
nance imaging (fMRI) to examine the bandwidth of orientation-tuned suppression within human visual cortex. Blood-oxygen-
level-dependent (BOLD) responses were acquired as participants viewed a full-field circular stimulus composed of wedges of ori-
entation-bandpass filtered noise. This stimulus configuration allowed us to parametrically vary orientation differences between
neighboring wedges in gradual steps between collinear and orthogonal. We found the greatest suppression for collinearly
arranged stimuli with a gradual increase in BOLD response as the orientation content became more dissimilar. We quantified the
tuning width of orientation-tuned suppression, finding that the voxel-wise bandwidth of orientation tuned normalization was
between 20° and 30°, and did not differ substantially between early visual areas. Voxel-wise analyses revealed that suppression
width covaried with retinotopic preference, with the tightest bandwidths at outer eccentricities. Having an estimate of orienta-
tion-tuned suppression bandwidth can serve to constrain models of tuned normalization, establishing the precise degree to
which suppression strength depends on similarity between visual stimulus components.

NEW & NOTEWORTHY Neurons in the early visual cortex are subject to divisive normalization, but the feature-tuning aspect of
this computation remains understudied, particularly in humans. We investigated orientation tuning of normalization in human
early visual cortex using fMRI and estimated the bandwidth of the tuned normalization function across observers. Our findings
provide a characterization of tuned normalization in early visual cortex that could help constrain models of divisive normalization
in vision.

divisive normalization; fMRI; vision; visual cortex

INTRODUCTION

Our visual system is tasked with representing our environ-
ment as completely as possible while incurring the lowest
possible metabolic cost. To accomplish this, the brain relies
on gain control mechanisms, which are believed to play an
essential role in reducing redundancy in neural coding (1-4).
One of the signature examples of gain control in action is
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surround suppression, wherein the response of a visual neu-
ron to a stimulus is divisively normalized by the sum of ac-
tivity generated by the stimulus and that generated by a pool
of neighboring neurons (5). Divisive normalization not only
demonstrably shapes visual responses (5-13), but also plays a
role in other sensory systems (14) and higher-level cognitive
processes (15), and has become regarded as a canonical neu-
ral computation (1).
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Within visual cortex, the strength of normalization is
modulated by stimulus features, and depends on the degree
of feature similarity (12). Indeed, normalization-driven sup-
pression has been shown to be strongest when stimuli in the
inhibitory surround share similar orientation content to that
of stimuli in the excitatory center (12, 13, 16-20). This unique
orientation-tuned property of normalization has been pro-
posed to contribute to the efficient neural coding of figure-
ground segmentation in visual scenes. In natural scenes, fea-
ture discontinuities tend to indicate borders between
objects, whereas regions with high feature similarity are of-
ten close to each other and belong to the same object (3, 21).
Orientation-tuned normalization is believed to play a key
supporting role in the efficient coding of neural representa-
tions, compressing the amount of neural resources coding
redundant collinearities and instead dedicating more vigor-
ous neural responses to discontinuities in orientation, which
typically signify areas of visual salience, such as the border
between figure and ground (22, 23).

Despite evidence supporting orientation-tuned normaliza-
tion in the visual cortex of animals (10, 18, 24), investigations
in humans mostly focus on contrasting responses to just two
cases at the extremes of orientation similarity: collinear and
orthogonal stimuli (7, 16, 25-31). In fMRI, stronger suppres-
sion for collinearly configured stimuli, compared with or-
thogonal configurations, has been demonstrated using
center-surround grating displays (27, 29, 31), flanker displays
(7, 26, 28, 30), and overlapping gratings (16, 25), establishing
that BOLD signal suppression from surrounding stimuli is
context dependent. However, such comparisons do not allow
for closer characterization of this feature-tuned aspect of
normalization, for which one would need to parametrically
manipulate stimulus orientation differences in finer steps.
Capturing the bandwidth, or specificity, of tuned normaliza-
tion could improve existing models of divisive normalization
by estimating the degree of feature similarity required to
engage suppression beyond a simple collinear-orthogonal
distinction. To our knowledge, no human neuroimaging
studies have characterized the specificity of orientation fea-
ture tuning. A narrow bandwidth, or high specificity, would
suggest that only a small deviation in orientation similarity is
sufficient to decrease suppression strength to produce a no-
ticeable change in the BOLD response. On the other hand, a
broad bandwidth would suggest that a large change in orien-
tation similarity is needed to modulate suppression strength
and BOLD responses. The goal of our experiment was to pro-
vide a thorough investigation of the specificity of these fea-
ture-selective properties in humans.

In this study, we used functional magnetic resonance imag-
ing (fMRI) to characterize the orientation bandwidth of tuned
normalization. To measure orientation-tuned normalization
on a large population scale, rather than use a typical center-
surround configuration, we designed full-field circular stimuli
consisting of wedge-shaped components containing orienta-
tion information, and manipulated the orientation differen-
ces between the neighboring stimulus components. The
extent to which the differently oriented components suppress
each other depended on the bandwidth of orientation-tuned
suppression. Our results revealed a gradual decrease in BOLD
response as orientation similarity increases. We characterized
the bandwidth within and across early visual areas V1-V3 by
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fitting Gaussian functions to the data at the visual area level
as well as at the level of individual voxels. Interestingly, the
estimate of cortical bandwidths for tuned suppression
dovetails nicely with known natural scene statistics (32),
supporting efficient coding approaches according to which
the visual system is adapted to natural scene statistics
(4, 33).

MATERIALS AND METHODS
Observers

The study was approved by the Boston University
Institutional Review Board. Ten observers (6 female) partici-
pated in the experiment, each completing two scan sessions.
An additional observer took part but was excluded from the
study after the first session due to poor behavioral perform-
ance (fixation task accuracy < 75%; see behavioral perform-
ance in Procedure). All observers reported normal or corrected-
to-normal vision. All were between the ages of 18 and 40,
provided written informed consent, and received monetary
compensation for their participation, with the exception of two
observers who were the authors of the study.

Apparatus and Stimuli

Stimuli were generated using the Psychophysics toolbox
in MATLAB (R2015b) on a MacBook Pro (OS X v.10.10.5), and
displayed on a rear-projection screen with a gamma-cor-
rected projector (ProPixx DLP LED, VPixx Technologies). The
circular stimulus had an outer diameter subtending 17
degrees visual angle (dva) and inner diameter 3 dva. At the
innermost display eccentricity (1.5 dva from central fixation),
each wedge subtended roughly 0.47 dva, and at the outer-
most eccentricity, each wedge subtended 2.66 dva. Stimuli
were generated by orientation and spatial frequency band-
pass filtering white noise, keeping only spatial frequencies
between 2 and 3 cycles/° and the specified orientations, with
an orientation filter bandwidth of 10°. Stimuli were pre-
sented at 50% Michelson contrast, on a mean luminance
background.

We generated stimuli containing 20 wedges in two inter-
leaved sets of 10, with seven possible equally spaced orienta-
tion differences between the two sets (0°, 15°, 30°, 45°, 60°,
75°, and 90°; Fig. 1). To avoid strictly orientation-specific
effects in our data, we used six different “base” orientations
(0°, 18°, 36°, 54°, 72°, and 90°); these orientations also track
the angular values of the individual wedges. All stimuli were
generated starting from 0° orientation, which we designated
as vertical; a “change in base orientation” means that the
entire stimulus was rotated by the new base orientation
value. For instance, if the orientation difference was 30° and
the base orientation was 18° in a given condition, the actual
orientation content of the two sets of wedges would be 18°
and 48°, maintaining the 30° orientation difference but vary-
ing the starting orientation. The orientation content of the
wedges (which orientation is displayed within which set of
10) was also counterbalanced; for example, if the orientation
difference was 15° and the base orientation was 0°, this con-
dition would be presented four times during each session
such that the sets of 10 wedges containing each orientation
were switched twice between the four blocks of that specific
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Figure 1. Examples of bandpass filtered stimuli used in the study. The full-
field stimuli were composed of two interleaved sets of 10 wedges, filled with
two independent noise patches. Stimuli are modified (increased contrast and
decreased spatial frequency) for illustration purposes.

condition (combination of orientation difference and base
orientation). The white noise patches within each half of the
stimulus were independent of each other.

Procedure

Data were acquired at the Cognitive Neuroimaging Center
at Boston University using a 3.0 Tesla Prisma scanner
(Siemens, Erlagen, Germany) with a 64-channel head coil.
All participants underwent two scanning sessions, each last-
ing between 2 and 2.5 h. In each session, observers com-
pleted 14 functional scan runs (with the exception of one
who only completed 11 runs in one of their sessions) with the
acquisition field of view oriented perpendicular to the calcar-
ine sulcus [T2*-weighted in-plane multislice imaging se-
quence with multiband factor 3 (34, 35), 36 slices, TR =1 s,
TE = 35.4 ms, flip angle = 64°, FoV = 136 mm, voxel size = 2
mm isotropic]. An anatomical scan used to register the func-
tional data was acquired during a separate session (TI1-
weighted multi-echo MPRAGE 3-D sequence, voxel size = 1
mm isotropic, FoV = 256 x 256 x 176 mm, TR = 2,530 ms,
TE =1.69 ms, flip angle = 7°).

Stimuli were presented in a block design (14 s on, 14 s off).
Each functional run lasted 350 s (1 s TR) and contained 12
stimulus blocks. Each set of 14 runs contained 24 repetitions
of each orientation difference condition, fully counterbal-
anced to reach equal numbers of base orientation presenta-
tions. The noise patch underlying the orientation stimulus
was refreshed at 2 Hz, whereas within each stimulus block of
the run, the orientation condition remained unchanged.
Throughout the run, participants were required to maintain
central fixation and perform a letter discrimination task
within the fixation circle. The fixation circle subtended 0.8
dva and contained a stream of letters, refreshing every 250
ms. Participants’ task was to detect letters “J” and “K” within
this distractor letter stream and press a corresponding key
on a two-button response box for each target letter as soon as
it was detected. The letter detection/discrimination task was
employed throughout the run in both baseline and stimulus
blocks, and targets could appear at any point during the run
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(regardless of baseline or stimulus block). Behavioral per-
formance in the fixation letter detection task averaged 93.2%
accuracy (¢1.86% SE), confirming that our observers were
well able to maintain alert fixation throughout the scan ses-
sion. Before acquiring the task scans, participants underwent
two runs of a functional localizer (14 s on, 14 s off, 182 TRs
total), later used for voxel selection. The localizer stimulus
was composed of a 100% Michelson contrast spatial pattern
flickering at a rate of 10 Hz. The localizer stimulus had iden-
tical inner and outer eccentricity bounds to the experimental
stimulus and encompassed the entire stimulus display
(rather than split into individual wedges). The spatial pattern
of the localizer was created by summing and rectifying pairs
of spiral and radial gratings. Throughout localizer presenta-
tion, participants were engaged in a fixation task identical to
the main experiment. In both the main task and localizer,
each scan always began and ended with an off-block.

fMRI Data Analysis

Population receptive field mapping and voxel selection.
Population receptive field (pRF) mapping was conducted for
each participant in a separate session, using the analyzePRF
toolbox for MATLAB (36, 37). In the pRF session, observers
were presented with two to three scans of each of two types
of mapping run: expanding/contracting ring and bar sweep
stimuli, and rotating wedge stimuli. The stimuli were com-
posed of a pink noise background with color objects and
faces of varying spatial scale, on a display with mean lumi-
nance background (36, 38). These are the same stimuli as the
ones used in the Human Connectome Project 7 T Retinotopy
dataset (38). The pink noise and images were refreshed at a
rate of 15 Hz. The results were analyzed with analyzePRF,
implementing the compressive spatial summation pRF
model (37). The results of the pRF analysis were used to man-
ually draw region-of-interest (ROI) labels, defining early vis-
ual areas V1, V2, and V3. pRF modeling results were then
used in conjunction with the localizer data to select voxels
for further analysis. Within each label, we first identified the
top 40% most visually responsive voxels across both ses-
sions, based on the localizer data. From this subset, we fur-
ther excluded voxels whose population receptive fields were
located outside the eccentricity bounds of the stimulus, or
those whose pRF model fit was poor (R*> < 10%). On average,
this procedure left 446 +96 (SD) voxels in V1, 394 + 62 voxels
in V2, and 281 = 45 voxels in V3 for analysis.

fMRI data preprocessing.

We applied EPI distortion correction to all fMRI BOLD time
series data using a reverse-phase encoding method (39)
implemented in FSL (40). The field map corrected data from
each session were then preprocessed with standard motion
correction procedures, Siemens slice timing correction,
and boundary-based registration between functional and an-
atomical spaces (41) implemented in FreeSurfer (42), v. 5.3.
No spatial smoothing was applied. To achieve voxel-by-voxel
alignment within and between the two experimental ses-
sions, we applied robust rigid registration (43), using the
middle time point of each run, and aligned each functional
run from both sessions to the first localizer scan in the first
session, which had been aligned to the anatomical data in

J Neurophysiol + doi:10.1152/jn.00203.2021 - www.jn.org

Downloaded from journals.physiology.org/journal/jn at Boston Univ (155.041.089.077) on November 9, 2021.


http://www.jn.org

¢)) HUMAN VISUAL CORTEX TUNED NORMALIZATION BANDWIDTH

the boundary-based registration step. Data for each voxel
were subsequently detrended, high-pass filtered, and con-
verted to percent signal change using custom MATLAB
scripts. The functional localizer data were analyzed sepa-
rately for each session using a standard GLM analysis in
FreeSurfer. The main task data for the two sessions were con-
catenated and further analyses were performed in MATLAB
using custom code.

fMRI data analysis.

For each observer, data were summarized in every voxel by
computing an event-triggered average for each orientation
difference condition, collapsing across the six base orienta-
tions and across repetitions of each condition. To account
for hemodynamic delay, a temporal shift of six TRs (6 s) was
implemented before averaging, resulting in an averaging
window starting at 6 TRs following stimulus onset and end-
ing at 14 TRs (stimulus offset), which captured the peak of
the BOLD activity.

Model fitting. We quantified the tuned normalization pa-
rameters in two ways: on the ROI-averaged data, and in indi-
vidual voxels. To obtain the ROI mean, we averaged across all
voxels within each ROI for each observer, and performed the
fitting procedure described in this section for each ROI and
observer. In individual voxels, model fitting was done on each
voxel’s averaged response. To quantify the tuned normaliza-
tion parameters, the data were fit with a half Gaussian func-
tion centered on an orientation difference of 0°:

(X —
Response = b + AeM7
202

where b refers to the baseline BOLD activation, A is the am-
plitude or the peak of the function, u is the mean of the func-
tion (set to 0° in order to constrain the fit), and o is the
standard deviation, which we will use as an estimate of
bandwidth. For each voxel or ROI, the Gaussian was fit to the
7 BOLD response values for each orientation difference by
minimizing least-squared error using the MATLAB fmin-
con function. The bandwidth parameter was constrained
between 5° and 90°; this was done to avoid distortions
caused by voxels that either showed no tuning to orienta-
tion difference (resulting in a flat response function) or
unreasonably narrow tuning. Furthermore, due to the ori-
entation filter bandwidth of 10° (5° on either side of the tar-
get orientation), the actual minimum possible angular
difference between individual orientation segments in two
components was 5° (in the 15° orientation difference con-
dition). The overall response amplitude was constrained
by an upper bound of 10% signal change; no constraints
were applied to the baseline parameter. We subsequently
calculated the R? values of the predicted Gaussian fit for
each voxel. The minimization procedure converged on a
solution for all fits and initially no data were excluded fol-
lowing fitting (but see RESULTS).

We additionally computed a suppression strength metric
from the raw data, expressed in units of % signal change. In
the whole-ROI analyses, we defined suppression strength in
each ROI as the difference between the averaged BOLD
response in the orthogonal condition and the collinear con-
dition. In the individual voxel analyses, suppression strength
was defined as the difference between each voxel’s average
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BOLD response in the orthogonal configuration and that in
the collinear configuration.

Statistical tests were implemented in MATLAB and R
using custom scripts. For statistical comparisons across
observers, unless stated otherwise, we ran a repeated-meas-
ures ANOVA with visual area as grouping factor (observers
were treated as random variables), and applied Bonferroni
correction for the number of visual areas to all post hoc ¢
tests. When conducting one-sample ¢ tests separately within
individual ROIs, no corrections were applied. Unless stated
otherwise, we report measures of dispersion as means *
standard error (SE).

Data and code availability.

Preprocessed fMRI data, behavioral data, and stimulus and
data analysis scripts used to generate the results and figures
in this manuscript can be found on the Open Science
Framework website (https://osf.io/bcyp5/).

RESULTS
Tuned Normalization Bandwidth: Whole ROI Analyses

Consistent with existing literature (7, 16, 25-31), collinear
stimuli evoked lower amplitude BOLD responses compared
with orthogonal stimuli. Suppression strength (the differ-
ence between averaged BOLD responses in the orthogonal
condition and that in the collinear condition) was largely
positive, except in a single ROI for one of the 10 observers.
The average suppression strength was 0.23+0.05 in V1,
0.28+0.05in V2, and 0.2+ 0.05 in V3. There was a significant
main effect of visual area [F, 15) = 6.559, P = 0.007]; post hoc ¢
tests revealed this reflected a significant difference between
suppression strength in V2 and V3 [t = 4.58, P = 0.004].
Suppression strength in each ROI differed significantly from
0 [one-sample ¢ tests, V1: {) = 4.6, P = 0.001, V2: () = 5.16,
P < 0.001, V3: £(9) = 3.96, P = 0.003]. Importantly, for the ma-
jority of observers, and for all three visual areas V1/V2/V3,
BOLD response magnitude showed a clear gradual increase
as a function of orientation difference (Fig. 2), indicating
that suppression strength changes progressively as a func-
tion of the degree of orientation similarity. Note that as the
data plotted in Fig. 2 are normalized with respect to the
response in the orthogonal condition, the values listed above
do not directly correspond to the differences observed in Fig.
2. To characterize the overall orientation-tuned normaliza-
tion response, we averaged across all voxels in each ROI and
observer, and fit the data individually (per observer and ROI)
with a half-Gaussian function. An example of fits for a repre-
sentative observer are shown in Fig. 3. With these fits, we
obtained an estimate of the standard deviation (bandwidth),
amplitude, and baseline for each observer and ROI. Note
that due to the shape of the tuned normalization function,
the fit is an inverted Gaussian, therefore decreasing in ampli-
tude toward the mean. As a result, the baseline parameter
represents the upper bound of the Gaussian fit, and the am-
plitude represents the difference between the baseline and
the y-intercept of the curve (which corresponds to BOLD
response magnitude of the collinear condition), and has a
negative value for all observers. The amplitude parameter is
closely related to suppression strength, as it is the difference
between the fitted responses to collinear and orthogonal
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Figure 2. BOLD responses as a function of orientation
difference, across observers (n = 10), from V1-V3.
Responses for each observer were normalized with
respect to the response to the 90° orientation differ-
ence condition. Thick black line represents the ob-
server average of these normalized responses.
Colored points depict responses for individual observ-
ers. Error bars represent means + 1SE.
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conditions, while suppression strength is the difference
between the actual BOLD responses in those two conditions.
Therefore, more negative amplitude estimates and larger
suppression strength point to greater suppression (larger dif-
ference between the collinear and orthogonal ends of the fit-
ted Gaussian curves). The baseline is an additive parameter
included to account for different absolute BOLD signal
change magnitudes across observers and ROIs. We largely
focus on our measures of suppression strength, and the
Gaussian parameter estimates of bandwidth and amplitude
for the remainder of the analyses.
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Figure 3. Gaussian function fit to the tuned normalization data for a single
example observer. Points indicate the average BOLD signal for each

region-of-interest (ROI) means + 1 SE. Dashed lines represent the
Gaussian fits for each ROI for this representative participant.
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The Gaussian fit the data well (average R? 0.66 % 0.11 in V1,
0.8+0.08 in V2, and 0.73+0.08 in V3), enabling us to rely on
the standard deviation parameter as a proxy for tuned nor-
malization tuning width estimates. Using this approach, we
found that the average bandwidth was 42.3° + 10.5° in V1,
32.7° £ 6.7° in V2, and 34.7° * 7.6° in V3. Observer-averaged
estimates of the parameters are displayed in Fig. 4A. R? val-
ues are included in Supplemental Fig. S1 (https://doi.org/
10.6084/m9.figshare.15826077). There were no between ROI
statistical differences in the bandwidth parameter [F1s) =
1.422, P = 0.27], or the amplitude parameter [F s5) = 1.56, P =
0.24]. The baseline parameter was significantly different
between visual areas [F;5 = 13.18, P < 0.001], reflecting
lower BOLD responses in area V3 (1.07 = 0.08% signal
change) compared to V1 and V2 [1.36 * 0.1%; t) = 5.18, P =
0.002 and 1.32 = 0.1%; (o) = 3.82, P = 0.012, respectively; see
Fig. 3]. There was also considerable interobserver variability
in the bandwidth parameter. As can be seen in Fig. 44, the
average is slightly inflated due to a few observers whose
BOLD response did not show strong orientation-tuned sup-
pression, resulting in a flat function.

Tuned Normalization Bandwidth: Voxel-Level Analyses

Model fitting and voxel exclusion.

We then carried out the fitting procedure at the individual
voxel level for each observer and ROI. The median for each
parameter estimate was computed and averaged across
observers. Averaged median R* was 0.52+0.07 in V1, 0.59 =
0.07 in V2, and 0.52+0.06 in V3, reflecting the increased
noisiness in the single-voxel data, as compared with ROI
averages. As with the ROI-averaged data, there were no sig-
nificant differences between ROIs in the bandwidth parame-
ter [F(218) = 0.7, P = 0.51]. There was a main effect of ROI in
the baseline parameter [F15 = 13.65, P < 0.001], again
reflecting differences between V1 (1.05 * 0.07% signal
change) and V3 (0.87 = 0.07% signal change; t) = 4.74, p =
0.003] and V2 (1.07 = 0.08% signal change) and V3 [t«) = 5.53,
P =0.001]. We also observed a main effect of ROI in the am-
plitude parameter [F(;1g) = 5.57, P = 0.013], which reflected
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Figure 4. A: parameter estimates (n = 10) for all visual areas, obtained by
fitting region-of-interest (ROI)-averaged voxel activation values for each
observer and ROI (PSC, percent signal change). B: median (per observer/
ROI) parameter estimates for all visual areas following removal of voxels
whose sigma parameter was estimated to be wider than 85° (n = 10). Data
are shown as observer averages + 1 SE. Colored points represent individ-
ual observer parameter estimates whereas large black circles represent
the observer averages.

marginally significant differences between V1 and V2 [t =
2.95, P = 0.049] and differences between V2 and V3 [t =
—-3.38, P = 0.025]; amplitude was lower in V2 than in the
other visual areas (—0.28+0.04 in V2 vs. —0.23+0.04 in V1
and —0.23+0.04 in V3). There was large variation in the
bandwidth estimates between observers, but also between
individual voxels. Specifically, a number of voxels showed
weak orientation-tuned suppression, meaning that their
estimated sigma value fell exactly below the upper bound-
ary of 90° and their BOLD response remained largely flat
across orientation differences, compared to the remaining
voxels. Upon further inspection, the voxels in question
also showed overall lower R? values (V1: 0.26 +0.04, V2:
0.31+0.06, V3: 0.28+0.04), and weaker overall responses
(lower BOLD % signal change; Supplemental Fig. S2;
https://doi.org/10.6084/m9.figshare.15830391). To obtain
a clearer picture of those voxels which did show tuning, we
excluded a subset of voxels whose sigma estimate fell
above 85°, capturing those that lacked tuning and had the
maximum possible standard deviation (see Supplemental
Fig. S3 at https://doi.org/10.6084/m9.figshare.15830526 for
the distributions of bandwidths across all voxels and
observers). This led to the removal of 26.7% (= 4.5%) of
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voxels on average in V1, 22.7% (*+ 4.3%) in V2, and 26% (+
4.2%) in V3. We then computed within-ROI median and
observer-average estimates from the remaining voxels,
shown in Fig. 4B. Voxel exclusion resulted in an overall
increase in R? compared with a voxel-wise analysis with all
voxels included (V1 average: 0.58+0.06, V2: 0.64 +0.06,
V3: 0.58+0.06) and a decrease in the sigma parameter av-
erage, but did not qualitatively change the overall results,
which found no differences between visual areas in band-
width [F(, 15y = 1.4, P = 0.27]. There was again a main effect
of ROI in the baseline parameter [F(, 1g) = 12.4, P < 0.001],
with significant post hoc ¢ tests in comparisons between
V1 and V3 [V1: 1.05+0.07, V3: 0.86=0.08; fo) = 3.53, P =
0.019], and V2 and V3 [V2: 1.09%0.08; to) = 4.74, P
0.003]. The amplitude parameter also differed between
areas [F(y1g) = 4.7, P = 0.023], this time with a significant
post hoc test only in V2 versus V3 [V2: —0.26 £0.05, V3:
—0.2+0.04; to) = —3.39, P = 0.024]. As there was high simi-
larity between the statistical comparisons in these two
samples, subsequent analyses were carried out using the
voxel subset with stricter selection criteria of SD < 85°.
The tuning width (standard deviation) estimates obtained
with this voxel subset were 23.1° = 1.3° in V1, 24.4° = 1.2° in
V2, and 22.8° * 1.5° in V3, calculated by averaging ROI-me-
dian estimates within ROI across observers.

Voxel-wise suppression strength was positive for the ma-
jority of voxels. The observer-averaged suppression strength
(calculated as average of each observer’s ROI medians) was
somewhat lower compared to the whole-ROI averages;
0.2%£0.04 in V1, 0.23+0.05 in V2, and 0.16+0.04 in V3.
There was again a significant main effect of visual area on
suppression strength [F(2,18) = 6.53, P = 0.007], reflecting
lower suppression strength in V3 compared with V2 [t =
4.27, P = 0.006], results consistent with the ROI average.
One-sample t tests again showed that suppression strength
in each ROI was significantly different from O [V1: ¢, = 4.62,
P=0.001, V2: gy = 4.99, P < 0.001, V3: £(9) = 3.6, P= 0.006].

As an additional analysis to validate the correspondence
between amplitude and suppression strength, we conducted
a Spearman correlation between voxel-wise amplitude esti-
mates and suppression strength in each observer and ROIL
The observer-averaged correlation coefficients were —0.85 (+
0.03) in V1, —0.87 (= 0.02) in V2, and —0.87 (+ 0.02) in V3,
indicating strong correspondence, where more negative
amplitudes (representing larger differences between the fit-
ted 90° response and the fitted 0° response) track larger sup-
pression strengths.

Tuned suppression and voxel spatial preference.

To further investigate properties of tuning width and sup-
pression strength, we carried out additional exploratory
analyses to characterize any dependence of suppression
strength or the fitted parameters on voxels’ retinotopic pref-
erence. To examine retinotopic preference dependencies, we
binned the voxels into 8 eccentricity bins, logarithmically
spaced between 1.5° and 8.5° (the inner and outer limits of
the stimulus, respectively), collapsed across polar angle pref-
erence (Fig. 5). Following this, we computed the median esti-
mate for each parameter per bin, observer and ROI. For each
ROI and observer, we then fit a linear function through the
data. Averages of the slope estimates were subsequently
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Figure 5. Relationship between data-derived sup-
pression strength and eccentricity (n =10; PSC, per-
cent signal change; A) the Gaussian parameter
estimates sigma (middle) and amplitude (right) vs.
eccentricity (n = 10; B). The data points represent
observer means of the parameters + 1 SE, per
region-of-interest (ROI) and eccentricity bin.
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computed across observers. We assessed the relationship
between the parameters and eccentricity by submitting the
slopes for each ROI to a one-sample ¢ test. The slope for the o
parameter was found to be significantly different from zero
in all 3 ROIs [slopes: —1.2+0.29 in V1, fo) = —4, P = 0.003;
—1.02£0.31 in V2, £ = —3.3, P = 0.009; —1.14+0.39 in V3,
Loy = —2.9, P = 0.018], indicating that the tuning width of
tuned normalization decreases with increasing eccentric-
ity. The averaged slopes for amplitude and suppression
strength were not significantly different from zero in any
of the ROIs.

We further explored whether these relationships also
depend on polar angle, as previous work has shown that per-
ceptual processing can differ between visual field segments,
for example between upper and lower visual fields (44-46).
We separated the visual field into quadrants, each compris-
ing 90° above, below, left, and right of fixation. Within each
visual field segment, we averaged the median estimates
across eccentricity bins for each observer and ROI to look for
differences between visual field segments. As can be seen in
Fig. 6, there appeared to be significant differences in sup-
pression strength between the upper and lower visual fields
[paired ¢ tests; V1 to) = 4.17, P = 0.002; V2 o) = 7.83, P <
0.001; V3 tq) = 2.65, P = 0.026), where suppression strength is
generally stronger in the upper visual field (0.31+0.06 in
upper visual field vs. 0.19+0.04 in lower visual field); this
relationship holds in all three ROIs. We also found amplitude
differences across the three ROIs between upper and lower
quadrants: higher amplitude estimates were observed in the
lower visual field across ROIs [paired ¢ tests; V1 £y = —3.58,
P =0.006; V2 tg = —8.3, P < 0.001; V3 to) = —3.27, P = 0.01].
The average amplitude in the upper visual field was
—0.35+0.05 and —0.22+0.0S in the lower visual field. As
mentioned earlier, more negative amplitude estimates, to-
gether with larger suppression strength, indicate a stronger
suppression effect in this area of the visual field. Generally,
we did not observe reliable differences in bandwidths
between visual field segments; only in V2, in the comparison
between left and right visual field, was there a statistically
significant difference [, = —3, P = 0.015], with wider sigma
in the right visual field. Plots depicting slopes between the
left and right quadrants of the visual field are shown in
Supplemental Fig. S4 (https://doi.org/10.6084/m9.figshare.
15830532). In addition, we have included surface maps for
polar angle, eccentricity and bandwidth for our representa-
tive observer in Supplemental Fig. S5 (https://doi.org/
10.6084/m9.figshare.15830538).
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In an additional exploratory analysis, we asked whether
the position of a voxel on the wedge had an influence on sup-
pression strength. Most differential suppression in our stim-
ulus was thought to occur at the boundary regions between
adjacent wedge components; each wedge serves as a “center”
as well as a “surround” in this circular full-field arrange-
ment. One could therefore assume that suppression strength
might differ between portions of our participants’ visual
fields corresponding to the boundaries between wedges and
the inner surfaces of the wedge components—specifically,
that we would find tuning by orientation difference at the
boundaries of the wedges but not on the surfaces of the com-
ponents where the orientation content is always collinear.
To explore this possibility, we binned voxel polar angle esti-
mates from the pRF analysis according to their position on
the wedge, into 1° bins, as follows: first, we split each wedge
into 18 bins (as each wedge spanned 18°) and grouped voxels
from corresponding bins in each of the 20 wedges together.
We then grouped them based on the distance from the
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Figure 6. Visual field differences in tuned normalization. A: median sup-
pression strength (n = 10; PSC, percent signal change). B: standard devia-
tion (top) and amplitude (bottom), n = 10. Points represent means across
observers + 1 SE plotted as a function of eccentricity, separated by visual
field segment. Each panel shows the comparison between upper visual
field (top; red) and lower visual field (bottom; blue).
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boundary, as opposed to just position on the wedge; for
example, voxels from the 0°-1° bin and 17°-18° bin were now
in the same group, as both are equally distant from the
boundary of the wedge. This step produced 9 bins (0°-1°
from boundary, up until 8-9-degree from boundary, which
was the center of the wedge). For each ROI and observer, we
then took the median of estimates for all voxels in each bin,
and averaged over observers for each ROI. We then fit a sim-
ple linear model to the observer-averaged data in each ROL.
Distance from boundary did not act as a significant predictor
for suppression strength or any of the Gaussian parameters
(See Supplemental Fig. S6, https://doi.org/10.6084/m9.
figshare.16617658). That is not to say there is no potential
spatial gradient, but our particular wedge and border sizes
were likely too small given the estimated pRF sizes of our
voxels, to pick up on these presumably finer scale gra-
dients in suppression strength. We designed our stimulus
to elicit the most suppression on a large population scale,
and to maximize the number of voxels differentially
modulated by suppression throughout the display. Thus,
the wedges took up 0.47 dva at the innermost stimulus ec-
centricity and 2.66 dva at the outermost eccentricity (see
MATERIALS AND METHODS), while the “gaps” between the
components took up less than 0.1 dva at all eccentricities.
On the other hand, the observer-averaged median esti-
mates of voxel receptive field sizes were much larger than
the gap sizes (in the closest eccentricity bin—V1: 0.43+
0.01 dva, V2: 0.53+0.05 dva, V3: 0.61+0.03 dva; in the
highest eccentricity bin—V1: 0.75+0.1 dva, V2: 1.6 0.06
dva, V3: 2.1+ 0.13 dva).

A final exploratory analysis examined potential causes
of broad bandwidth estimates in the excluded voxels,
namely that they may be caused by noisy voxels, as indi-
cated by the Gaussian R?. As expected, there were signifi-
cant negative correlations between bandwidth and R?
(Spearman correlation, observer-averaged correlation
coefficients —0.25+0.03 in V1, —0.23+0.04 in V2, and
—0.24 = 0.03 in V3); this agrees with our above observa-
tion of overall lower average R? values in broad-band-
width voxels. We first looked at the spatial distribution of
these voxels across the stimulus display. Broad band-
width voxels were found across the entire visual field, as
opposed to being bound to e.g., only high eccentricities,
suggesting that broad bandwidth fitting in these voxels
was not an artifact of their visual field position. We subse-
quently examined the behavior of bandwidth and R?, in
all the voxels that underwent the Gaussian fitting, across
the visual field; if broad bandwidths were simply a prod-
uct of lower R?, we would expect corresponding behavior
of the two parameters, i.e., as bandwidth becomes
sharper towards the periphery, we would expect higher
R? values there. However, this was not the case; we
binned R? and bandwidth for the whole voxel set into ec-
centricity bins, following the same steps we took in creat-
ing Fig. 5. Although R? tended to decrease with
eccentricity [slope was significantly different from 0 in V3,
to) = —2.62, P=0.028], bandwidth showed a similar pattern
as in Fig. 5, with slope significantly different from 0 in V1
[£0) = —3.24, P = 0.01], and no increases in slope. This sug-
gests that broad sigma estimates are not entirely a product
of low R?.
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DISCUSSION

Our results suggest that the bandwidth of tuned suppres-
sion in human early visual cortex is around 23° on average,
and between 20° and 30° for most observers. This finding,
which to our knowledge is the first fMRI investigation of
tuned suppression bandwidth, expands on previous studies
showing reliable differences in BOLD signal amplitude
between collinear and orthogonal stimulus configurations
(7,16, 25-31).

These findings build on existing animal and psychophysi-
cal work, some of which did explore the extent of orienta-
tion-dependent tuning of surround suppression. One animal
study (18) varied orientation differences in a center-surround
stimulus, gradually changing the relative orientations of the
two components in 30° increments, and found that response
magnitudes decrease incrementally with increasing similar-
ity, although suppression bandwidth was not directly inves-
tigated. Shushruth et al. (11) investigated suppression tuning
more directly and discovered significant tuning with center-
surround stimuli, which they roughly matched between
macaque V1 recordings and an accompanying human psy-
chophysical study using contrast matching. Tuning was
sharper when the center and surround were in proximity,
and weaker when they were far apart. Petrov et al. (17) also
used a contrast matching task with center-surround stimuli
in humans and reported that surround suppression was
quite tightly tuned, with strong suppression at similar orien-
tations and almost no suppression at orientation differences
that exceed 45°. Cannon and Fullenkamp (47) concluded
there are two tuning mechanismes in their study using a psy-
chophysical contrast matching task with human observers
and center-surround stimuli: one suppression mechanism
was narrowly tuned, disappearing at an orientation differ-
ence of ~15°, whereas the other decreased more gradually
and was still present when the center-surround orientation
difference reached 90°. Our stimuli are not center-surround,
and so we were unable to employ a center-only condition to
compare the amount of suppression at 90° with a no-sur-
round configuration. At the same time, our minimum orien-
tation difference was 15° (although see discussion on
stimulus limitations below), and so we cannot study the nar-
rower tuning mechanism. However, the BOLD signal
strength in our data set continued to change with increasing
orientation differences up until a difference of 90°, suggest-
ing some similarity between the mechanism we captured
and the broader tuning component reported by Cannon and
Fullenkamp (47). More recently a psychophysical study (48)
examined the bandwidth of suppression in motion direction
tuning by using center and surround grating stimuli which
differed in relative orientation as well as motion direction,
and found that when motion directions of the center and
surround matched, suppression strength was at its maxi-
mum, decreasing with increasing angular direction differen-
ces. The reported average tuning width for motion direction
differences was 28°, which bears close resemblance to our av-
erage estimates of tuning for orientation differences.

When comparing our suppression strength results to exist-
ing literature, it is important to note that the work presented
here measures only the tuned component of suppression,
i.e., the difference in BOLD response between collinear and
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orthogonal stimulus configurations, whereas most literature
examining suppression strength focuses on contrasting
BOLD responses to a central stimulus with or without a sur-
round (i.e., untuned suppression). Untuned suppression was
generally found to be stronger in extrastriate areas, as com-
pared to V1 (49, 50). Few groups directly examined differen-
ces in tuned suppression between visual areas. Bloem and
Ling (16) found a decrease in tuned normalization magni-
tude across early visual areas, while Poltoratski et al. (26),
who used flanker displays, reported no statistical differen-
ces. Other studies examining tuned normalization did not
conduct direct statistical comparisons between areas (27,
30), although one reported that tuned suppression was sig-
nificantly different from zero in extrastriate cortex but not in
V1(27).

Likewise, in previous psychophysical work, tuned and
untuned suppression have shown diverging eccentricity
effects. Untuned suppression strength typically increases
with eccentricity with a plateau at around 4 dva from fixa-
tion (13, 17). However, Xing and Heeger (13) found no ec-
centricity-based differences in the magnitude of tuned
suppression, but noted that suppression was stronger, and
less specific, in the visual field periphery. Our neuroimag-
ing results also revealed no eccentricity effects on tuned
suppression strength. Unlike previous studies, we did not
use a cortical magnification factor to adjust the spatial fre-
quency of our stimuli with eccentricity, which could be
a contributing factor for some of the differences bet-ween
previous findings and our results. The other obvious dif-
ference is the overall stimulus configuration—all previous
work described above used center-surround grating stim-
uli or flanker displays to elicit surround suppression.
While our stimulus clearly elicits measurable orientation-
tuned responses in the visual cortex, it makes direct com-
parisons with studies using different stimuli difficult.

A limitation of our stimulus was the orientation filter
bandwidth (10°, see MATERIALS AND METHODS). The addition
of a filter bandwidth means that the possible orientation dif-
ferences between individual components could range
around the intended value (for instance, in a 15° orientation
difference condition where one component is 0° and the
other 15°, the filter bandwidth used means that the actual
minimum difference between some of the individual compo-
nents could range between 5° and 25°). While this clearly
does not hinder our ability to measure orientation-tuned
suppression, it imposes a limit on the precision of bandwidth
estimates.

The goal of the present study was to estimate the band-
width of orientation-tuned suppression, which is distinct
from orientation tuning bandwidth. That said, our ability to
measure orientation-tuned suppression bandwidth is also
limited by the underlying orientation tuning in the visual
areas of interest. Orientation tuning bandwidth within
human visual cortex has been studied with psychophysics
and fMRI. For instance, one study (51) used fMRI adaptation
to measure transient BOLD responses to orientation changes
in a full-field grating stimulus, and estimated the bandwidth
of orientation tuning in human V1 at 45°. In psychophysi-
cal work using the orientation noise-masking technique
(52), estimated orientation tuning bandwidth ranged
between 15 and 30 degrees. Thus, similar to investigations
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of tuned normalization bandwidth, estimates of orienta-
tion tuning bandwidth in human early visual cortex vary
quite widely.

Our results could be of use in further constraining current
models of divisive normalization so that they take more granu-
lar feature similarity into account. The notion that suppres-
sion strength varies with feature similarity has been explored
in research investigating how the visual cortex appears opti-
mized for natural scene properties. According to theories of
efficient coding, the visual system attempts to remove redun-
dancies in incoming visual input to achieve a more efficient
representation, and one of the ways this could be accom-
plished is through divisive normalization (3). Indeed, there is
evidence that surround suppression among V1 neurons in the
macaque is stronger for homogeneous, as opposed to hetero-
geneous, images, suggesting that feature tuning supports effi-
cient coding of visual stimuli, discounting less informative
homogeneous regions and highlighting contrasts between
objects to promote figure-ground segregation (2, 33). Coen-
Cagli et al. (2) further demonstrated the significance of feature
similarity in divisive normalization by showing that the stand-
ard normalization model only accounts for roughly half the
variance in macaque V1 neural responses to natural images,
but when a gating component based upon the degree of homo-
geneity in the images was added to the model, the variance
explained dramatically improved. In this flexible model vari-
ant, when the center and the surrounding portions of an image
share their features and are thus considered homogeneous,
the surround suppression mechanism is engaged; however,
when the two components are judged as heterogeneous, the
surround influence is “switched off” and the neural response
to the center component of the visual stimulus is not normal-
ized by the response to the surrounding area. While this
model improves data fits significantly, incorporation of
our more fully characterized surround suppression func-
tion could provide an even closer prediction; having
knowledge of the bandwidth could allow for a gradual
adjustment of suppression strength, and yield an estimate
of how much suppression one might expect for a particular
orientation difference.

More evidence to support the idea that tuned normaliza-
tion strength reflects the most common properties of natural
scenes comes from natural image statistics analyses. While it
was well established that nearby contours are most likely to
be collinear (23), Sigman et al. (32) examined the number of
occurrences of orientation differences graded in 11.25° steps
between image segments, found in a database of 4,000 pho-
tographs of natural scenes. Pairs of segments containing ori-
entations collinear to each other occurred most frequently,
and there was a gradual drop in frequency with decreasing
orientation similarity, with orthogonal orientation segment
pairs being least likely to co-occur in a scene, matching our
results. This finding squares with our results particularly in
light of efficient coding perspectives. The surround region
can be thought of as setting the context for the center (3,
30), and when the center matches this expectation (i.e., is
collinear), the output of the units responding to the center
is suppressed to reduce redundancy in neural coding.
Conversely, when the center is orthogonal to the surround,
reduced suppression will ensure that this informative sig-
nal is processed with increased saliency. This supports
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the notion that suppression strength dependence on ori-
entation similarity is well matched to the statistics of natu-
ral stimuli; more predictable, redundant components,
which are also more likely to co-occur in scenes, are sup-
pressed, while the less frequently occurring stimuli, which
often highlight regions of interest such as figure-ground
transitions, benefit from increased saliency brought about
by reduced suppression.

In summary, our results reveal that suppression
strength in human early visual cortex depends on orien-
tation differences between scene elements. Of course,
other features play a role in our visual system’s ability to
parse visual scenes, such as similarities in contrast and
spatial frequency, or distance between scene components
(2, 47, 53, 54). Here we focused solely on orientation dif-
ferences, but going forward, incorporating other dimen-
sions, in particular stimulus contrast, would be a crucial
next step in fully characterizing the profile of feature-
tuned normalization.
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