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Normalization governs attentional modulation
within human visual cortex
Ilona M. Bloem 1,2* & Sam Ling1,2

Although attention is known to increase the gain of visuocortical responses, its underlying

neural computations remain unclear. Here, we use fMRI to test the hypothesis that a neural

population’s ability to be modulated by attention is dependent on divisive normalization. To

do so, we leverage the feature-tuned properties of normalization and find that visuocortical

responses to stimuli sharing features normalize each other more strongly. Comparing these

normalization measures to measures of attentional modulation, we demonstrate that sub-

populations which exhibit stronger normalization also exhibit larger attentional benefits. In a

converging experiment, we reveal that attentional benefits are greatest when a subpopulation

is forced into a state of stronger normalization. Taken together, these results suggest that the

degree to which a subpopulation exhibits normalization plays a role in dictating its potential

for attentional benefits.
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Neural processing is surprisingly efficient. Although our
environment is brimming with information, our cognitive
system adeptly regulates competition between neural

representations—all vying for visual awareness. A growing body
of evidence suggests that this is made possible, in part, by
recruiting a seemingly ubiquitous neural computation, known as
divisive normalization, which can regulate the relative strength
between competing representations1–4. Under normalization, the
response to a stimulus is modulated by the summed activity
generated by the stimulus itself, along with pooled neighboring
responses. This computation crucially supports a number of
functions, including regulating the dynamic range of neural
responses2,3,5,6. Models of divisive normalization have long
served as cornerstone principles for computational accounts of
early vision, and generalize to a variety of other sensory
modalities3,7,8 and cognitive processes5,9–14. Interestingly, nor-
malization is also believed to be modulated by contextual influ-
ences, whereby visual features that are similar tend to normalize
each other more than those that are dissimilar10,15–18. This
feature-tuned aspect has been theorized to play an active role in
reducing redundant sensory information17,19–22. The image
properties in our visual environment are comprised of statistical
biases, whereby neighboring features belonging to the same object
are most likely to be similar. Feature-tuned normalization
incorporates these inherent dependencies, acting as a form of
neural information compression by deprioritizing the processing
of redundant representations17,21,22, thereby aiding in the segre-
gation of a figure from its background.

While tuned normalization may play a role in the bottom-up
enhancement of potentially relevant information in a visual scene,
we ultimately rely on top-down attentional systems to selectively
enhance a small subset of that information for prioritized pro-
cessing, from moment to moment. One of the most well-
documented ways that attention enhances relevant information is
by increasing the gain, or ‘strength’, of the behavioral23–26 or
neural response5,27–30. Interestingly, prominent computational
models have theorized that normalization and attention are
tightly linked, whereby attentional modulation within visual
cortices is dependent on divisive normalization5,31,32. These
models propose that attention can alter the balance between the
stimulus activity and the summed activity of the normalization
pool, weakening the current state of gain control, and thereby
resulting in an increased neural response. Normalization accounts
of attention have traditionally hinged on three key components:
the locus of attention, the size of the stimulus, and the size of the
attentional window5,28,33. However, while these models have
proposed that the spatial extent of the ‘attention field’ could be
feature selective5,26,34, the suppressive drive itself is typically
considered to be feature-agnostic, allowing an equal contribution
of all information, regardless of feature similarities. The notion
that attention modulation could additionally depend on a fourth
component, incorporating the feature-selective nature of nor-
malization, has some support in animal studies, with single-unit
recordings in macaques suggesting that the contribution of tuned
normalization can explain attention biases of competition
between multiple stimuli within a receptive field10.

In this study, we use functional magnetic resonance imaging
(fMRI) to test the hypothesis that attention-driven modulation of
the gain of responses within human visual cortex depends on the
magnitude of tuned normalization. We approach this problem by
first devising an efficacious, voxel-by-voxel population measure of
the feature-tuned aspects of normalization within early visual
cortex, during passive viewing. To do so, we exploit a phenom-
enon known as sub-additivity, a signature property of normal-
ization wherein the population responses to images comprised of
two superimposed stimuli fall short of the linear sum of the

response to each stimulus independently35–40. We demonstrate
potent tuned normalization within human visual cortex: super-
imposed stimuli sharing the same features are more strongly
normalized than stimuli that differ in their features. Armed with a
population measure of feature-tuned normalization, we set out to
test the hypothesis that attentional modulation is partially driven
by tuned normalization. If normalization truly governs atten-
tional modulation, we reason that attention-driven gain changes
will be greater when a neural subpopulation within early visual
areas exhibits stronger normalization. Indeed, in our second
experiment we reveal that tuned normalization is tightly linked to
an independent measure of attentional modulation. Leveraging
population-wide heterogeneities in BOLD responses for both
normalization and attention measures, we find that subpopula-
tions that exhibit stronger normalization also exhibit larger
attentional benefits. Finally, in a third converging experiment, we
directly manipulate spatial attention, while simultaneously mea-
suring population activity under different states of normalization.
In doing so, we demonstrate that attentional benefits are greater
when the population is put under stronger normalization. In sum,
our results suggest that a neural population’s capability for
attentional benefits appears contingent upon normalization,
whereby the degree to which a population can normalize itself
results in greater potential for attentional modulation.

Results
Sub-additivity as a signature of tuned normalization. We first
set out to obtain a population measure of visuocortical responses
under different states of normalization. Specifically, in addition to
a well-known untuned, feature-agnostic component, does sub-
additivity show a signature of a tuned, or feature-selective com-
ponent? We leveraged the fact that population responses to images
comprised of superimposed visual stimuli are not simply the
linear sum of the response to each stimulus independently35–38.
Instead, the response typically exhibits a property known as sub-
additivity—a phenomenon nicely captured by contrast normal-
ization. This is believed to emerge due to the compressive nature
of normalization, which acts to nonlinearly limit the overall
response to the stimuli. To assess the influence of tuned
and untuned normalization on population responses within
human visual cortex, we leveraged an fMRI noise-masking
technique24,36,38, which allowed us to test the degree to which
BOLD responses within early visual cortex exhibit sub-additivity,
depending on stimulus feature similarity. To tap into the sub-
additive nature of tuned normalization, we constructed stimuli
that were composed of linearly summed pairs of oriented
bandpass-filtered noise gratings (outer diameter 15°; inner dia-
meter 3°; at 50% Michelson contrast; spatial frequencies between 2
and 3 cycles/°; orientation bandwidth of 10°). Importantly, images
were constructed using pairs of stimuli combined in either an
orthogonal (different features) or a collinear configuration (similar
features; Fig. 1a). We measured BOLD responses to these collinear
and orthogonal stimuli configurations in separate blocks during an
fMRI session, while participants performed a demanding task at
fixation, finding targets in a rapid letter stream, and ignoring the
stimuli presented in the periphery (Supplementary Fig. 1). In
addition, in a separate set of scans we measured the BOLD
response to both individual components (45° & 135°), in separate
blocks, that comprised the overlaid stimuli, and summed the
responses for each component in order to create a hypothetical
additive sum. Note, we did not find a difference in the evoked
responses to individual components when oriented radial or
tangential from fixation (Supplementary Fig. 2). The sub-additive
deviation from the hypothetical sum for both the collinear and
orthogonal configurations served as our measure of untuned
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normalization, while comparing the difference between responses
evoked by the two overlaid configurations served as our measure
for an additional tuned component.

Orthogonal and collinear stimuli configurations both exhibited
sub-additivity across early visual areas (V1–V3), with the
measured BOLD response of both stimulus configurations being
lower than the hypothetical additive sum (repeated measures
ANOVA orthogonal sub-additivity: main effect of additivity F
(1,15)= 16.39, p= 0.001, η2p = 0.522, main effect for visual area
and the interaction, p > 0.3; repeated measures ANOVA collinear
sub-additivity: main effect of additivity F(1,15)= 22.84, p < 0.001,
η2p = 0.604, main effect for visual area and the interaction, p > 0.4;

Fig. 1b, Supplementary Fig. 1). Furthermore, the responses
demonstrated robust feature-tuned normalization as well,
whereby stimuli comprised of collinear orientations were more
sub-additive, and thus more strongly normalized, than stimuli
that contained orthogonal orientations (repeated measures
ANOVA interaction effect F(2,15)= 7.85, p= 0.005, η2p = 0.511;
tuned normalization post hoc analysis two-sided paired t-test; V1:
t(5)= 6.00, p= 0.0057, d= 2.44, V2: t(5)= 3.82, p= 0.0370, d=
1.56, and V3: t(5)= 3.44, p= 0.0551, d= 1.42, Bonferroni
corrected). While BOLD responses to either stimuli configuration
across visual areas were fairly consistent in the degree to which
they exhibited sub-additivity (untuned normalization), the
magnitude of the feature-tuned aspect of normalization decreased
in strength along the visual hierarchy (one-way ANOVA across
visual areas: F(2,17)= 7.85, p= 0.005, η2p = 0.511). This
orientation-tuned aspect of normalization was strongest within
primary visual cortex—a region shown to be most precisely tuned
to orientation content41–43, and became less apparent as we
moved up the visual hierarchy, consistent with a shift in the
preferred feature space. We next explored the degree of
dependency, from voxel-to-voxel, of the deviation from additivity
for both orthogonal and collinear stimuli configurations within
V1. Although there was heterogeneity in the magnitude of sub-
additivity between voxels within a region, comparing the
difference between the hypothetical additive sum with both
collinear and orthogonal stimulus configurations revealed a
consistent pattern, with the collinear configuration exhibiting
larger sub-additivity compared with the orthogonal configuration
—an effect that was highly reliable for the majority of voxels
within V1, but decreased in V2 and V3 (Fig. 1c, Supplementary
Figs. 3, 4).

Importantly, the differences in BOLD responses evoked by the
two stimuli configurations were not driven by differences in the
image statistics, adaptation (see Supplementary Fig. 5), nor could
they be explained by basic first-order visual response properties.
A Fourier analysis confirmed that while the orientation content
between the stimuli configurations differed, the overall power was
comparable (Fig. 2a). Furthermore, a V1-based energy detection
model44–49 that only incorporated untuned divisive normal-
ization also fell short of accounting for these results. In this
model, we estimated the amount of contrast energy each class of
images evoked by applying a linear Gabor wavelet decomposition
that described tuning along the dimensions of space, phase,
orientation, and spatial frequency44,45 (Fig. 2b). Five hundred
unique images for both collinear and orthogonal stimuli
configurations were passed through the model, which resulted
in a measure of contrast energy for each image, contained in
quadrature wavelet pairs. After combining all wavelets across
space and spatial frequency scales, a measure of contrast energy
evoked by each orientation channel remained. The model output
then underwent divisive normalization, effectively acting as a
contrast gain control operator2,6,50. A bootstrap analysis indicated
that there is no difference between the two simulated stimulus
energy distributions, indicating that these images have the same
stimulus energy when applying untuned normalization (95%
confidence interval= [−0.026, 0.019]; Fig. 2c). Importantly,
however, a difference in stimulus energy was observed when we
incorporated an orientation-tuned component into the normal-
ization model (bootstrapped 95% confidence interval= [0.362;
0.4035]; Fig. 2d), indicating that the observed differences in sub-
additivity of the BOLD responses between the two stimuli
configurations can be driven by tuned normalization.

Attentional modulation is related to tuned normalization.
Leveraging our ability to measure feature-tuned normalization
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Fig. 1 Sub-additivity as a measure of tuned normalization. a Schematic of
stimuli used to measure sub-additivity. Two oriented stimuli components
(outer diameter 15°; inner diameter 3°, at 50% Michelson contrast, spatial
frequencies between 2 and 3 cycles/°; orientation bandwidth of 10°) were
linearly summed in either an orthogonal (top; blue) or a collinear (bottom;
orange) configuration, resulting in a full contrast stimulus. Stimuli are
modified for illustrative purposes. b Average BOLD responses across
observers for orthogonal (blue) and collinear (orange) configurations. A
hypothetical additive response (black) was created by summing the
average response evoked by both individual stimulus components (45° &
135°). Dots represent individual observers; N= 6; error bars denote ± 1
S.E.M. c Voxel-wise relationship of the deviation from additivity for both
stimuli configurations in V1. BOLD responses were normalized for each
participant. Small colored dots indicate individual voxels; larger black dots
represent the whole ROI average per observer.
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within human visual cortex, we then set out to test our main
hypothesis: Does attention boost information processing by
modulating divisive normalization? Our previous experiment
demonstrated that collinear stimulus configurations were more
sub-additive, as they evoked lower BOLD responses compared
with orthogonal stimuli. Importantly, while responses to each
stimulus configuration varied substantially, this difference
between collinear and orthogonal configurations was consistent
for almost all voxels within an area (Fig. 1c, Supplementary
Fig. 4). In a second experiment, we examined the degree of voxel-
wise dependency between this measure of tuned normalization
and an independent measure of attention modulation. If nor-
malization and attentional modulation interact, we predicted that
those subpopulations that are more strongly normalized should
also exhibit the highest potential for attentional modulation.

Tuned normalization strength was quantified as the difference
between the mean BOLD responses to orthogonal and collinear
stimuli blocks. Collinear stimuli evoked weaker BOLD responses
compared with orthogonal stimuli, resulting in a positive
difference for all regions of interest (Fig. 3a). To measure
attentional modulation, we assessed BOLD responses while
participants viewed orientation bandpass-filtered noise gratings
(outer diameter 15°; inner diameter 3°; at 50% Michelson
contrast; spatial frequencies between 2 and 3 cycles/°; orientation
bandwidth of 10°). While viewing these stimuli, participants were
asked to either covertly attend toward the stimulus, performing a
fine orientation discrimination task (Attended condition), or
perform a demanding task at fixation, which drew attention away
from the oriented stimulus (Unattended condition). Note that the
visual stimulation was identical in both conditions, with the only
difference being the task observers performed (Supplementary
Fig. 6). Attention modulation was defined as the difference
between BOLD responses to attended and unattended stimuli
blocks. Consistent with previous findings24,51–53, striate and
extrastriate cortex exhibited robust attentional modulation
(Fig. 3b; repeated measures ANOVA: main effect of attention F
(1,15)= 50.38, p < 0.001, η2p = 0.771, while main effect for visual
area and the interaction did not reach significance, p > 0.4).

While these results reflect the average response across the
entire region of interest (ROI), the magnitude of tuned normal-
ization strength varied substantially from voxel-to-voxel within
each visual area, suggesting heterogeneity across the population
(Fig. 1c). Leveraging this population-wide heterogeneity in neural
responses in both attentional modulation and tuned normal-
ization measures, our results revealed that subpopulations that
exhibit the strongest tuned normalization also possess the greatest
attentional benefits, most strongly within V1 and V3 (Fig. 4; one-
way ANOVA on Fisher-Z transformed Spearman correlations; F
(2,17)= 3.326, p= 0.064, η2p = 0.307; post hoc two-sided one
sample t-tests V1: t(5)= 4.30, p= 0.0231, d= 1.76, V2: t(5)=
2.96, p= 0.0944, d= 1.21, and V3: t(5)= 5.14, p= 0.0109, d=
2.10, Bonferroni corrected). To explore the spatial distribution of
these effects, we examined the correspondence between the
retinotopic preference and attentional modulation or tuned
normalization strength measures. Using pRF mapping
procedures54,55, we estimated the preference for spatial position
for every voxel, allowing us to assess potential biases in both
measures of interest, based on retinotopic preference. There did
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not appear to be any strong clustering of either of our two
measures across spatial position. This suggests that while both
attentional modulation and normalization strength share a tight
relationship, this is not driven by a systematic coarse-scale
topographical organization (see Supplementary Fig. 7). Further-
more, to ensure that our results reflected a true relationship
between normalization and attention, rather than being driven by
differences in spurious factors, such as the signal-to-noise ratio
(SNR), our analyses were restricted to the top 25% most visually
responsive voxels within V1–V3, selected by ranking the
significance obtained from a standard GLM analysis of an
independent functional localizer. Note that the relationship
persists when all voxels within a respective region are used in
the analyses (one-way ANOVA on Fisher-Z transformed Spear-
man correlations; F(2,17)= 2.78, p= 0.094, η2p = 0.270; post hoc
two-sided one sample t-tests V1: t(5)= 5.30, p= 0.0096, d= 2.16,
V2: t(5)= 3.42, p= 0.0567, d= 1.40, and V3: t(5)= 4.66, p=
0.0166, d= 1.90, Bonferroni corrected). In addition, we examined
whether the relationship between tuned normalization strength
and attentional modulation was still evident even when we broke
down our stringent voxel selection into four bins, according to
ranked goodness of fit of responses to the visual localizer
(Fig. 4b). While the observed correlation within V1 and V2 was
not driven by differences in the goodness of fit of the localizer
scans, as a similar relationship persisted in each bin, within V3
the correlation did seem driven by voxels that had a better fit

(one-way ANOVA of Fisher-Z transformed Spearman correla-
tions across bins; V1: F(3,20)= 0.52, p= 0.672, η2p = 0.073; V2: F
(3,20)= 0.62, p= 0.612, η2p = 0.085; and V3: F(3,20)= 3.97, p=
0.023, η2p = 0.373). The less pronounced relationship in extra-
striate cortex is likely driven by the reduced heterogeneity and
overall magnitude of tuned normalization strength observed in
these visual areas (Fig. 4, Supplementary Fig. 8). Taken together,
leveraging the heterogeneity of population responses for atten-
tional modulation and tuned normalization strength, our results
reveal a tight link between these two measures, which was
strongest in primary visual cortex, suggesting that a neural
subpopulation’s potential to increase its attentional gain is
dependent on its tuned normalization strength.

Tuned normalization modulates spatial attention. To provide
converging evidence in support of the underlying relationship
between tuned normalization and attention, we carried out an
additional experiment, wherein we directly assessed whether
attentional modulation is greater when the population response is
put under a state of stronger normalization. To do so, we mea-
sured BOLD responses for the overlaid stimuli configurations in
separate blocks, similar to those constructed in Experiment 1,
while covert spatial attention was directed to either the left or
right side of fixation. To leave enough headroom for an increased
BOLD response with attention, we used a lower contrast stimulus

2

0

0 42

0 42

0 42

Tu
ne

d 
no

rm
al

iz
at

io
n 

st
re

ng
th

Attention modulation

1
2
3
4
5
6

O
bs

er
ve

rs

2

0

2

0

V1

V1

V2

V2

V3

V3
1st

2nd

3rd

4th

b

a

0

1

R

Fig. 4 Attentional modulation as a function of tuned normalization strength. a A tight relationship between tuned normalization strength and attentional
modulation is evident for the top 25% selected voxels for each observer, see Methods. Dots illustrate individual voxels within an area, colors represent a
unique participant. b Spearman correlations were computed for each observer, gray bars represent the mean correlation across observers, while the
colored bars represent the correlations when the voxel selection is broken down into four bins based on the independent visual localizer (red: bottom 25%,
yellow: top 25%). All Spearman correlations were transformed into a Fisher-Z-statistic to allow for statistical comparisons between observers, see
Methods. Error bars denote ± 1 S.E.M.; N= 6; colored dots illustrate individual observers.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13597-1 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5660 | https://doi.org/10.1038/s41467-019-13597-1 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(individual components 25% contrast, resulting in a combined
overlaid stimulus of 50% contrast). Participants performed a
demanding probe detection task, detecting and discriminating
whether a neutral gray Gaussian disk was embedded in the upper
or lower visual field of the attended side of the screen, while
maintaining fixation at the center of the screen (Fig. 5a, Sup-
plementary Fig. 9, diameter probe 1.5°). Note that the targets
could appear on either side of fixation, and only the cue at
fixation would indicate where to attend. This experimental design
allowed us to simultaneously measure BOLD responses for either
configuration when attention was directed toward or away from
the stimulus.

First, we assessed whether stimuli that share feature informa-
tion (collinear configuration) yield stronger tuned normalization,
compared with stimuli with dissimilar features (orthogonal
configuration), when attention was directed to the opposite
visual field. In agreement with the results of Experiment 1, we
found strong tuned normalization that decreased in its strength
across visual areas (Fig. 5b; repeated measures ANOVA
interaction effect F(2,15)= 4.116, p= 0.038, η2p = 0.354; tuned
normalization post hoc analysis two-sided paired t-test; V1:
t(5)= 5.46, p= 0.008, d= 2.23, V2: t(5)= 4.84, p= 0.014, d=
1.99, and V3: t(5)= 5.80, p= 0.006, d= 2.32, Bonferroni
corrected; one-way ANOVA across visual areas F(2,17)= 4.12,
p= 0.038, η2p = 0.354). Having established that there is strong
tuned normalization when attention is directed away, we then set
out to test whether tuned normalization truly dictates the
magnitude of attentional modulation. We hypothesized that the
largest attentional effects would be evident when a neural
population experiences stronger normalization, induced by the
similarity between the features of the overlaid stimuli (i.e.,
attentional effects for collinear >orthogonal).

To quantify the magnitude of attentional modulation, we
computed the difference between responses when attention was
directed toward vs. away, from either the collinear or orthogonal
stimuli configurations. We discovered that attentional effects
were indeed the greatest for the collinear stimulus configuration,
when neural responses were put under a stronger state of
normalization (Fig. 5c; repeated measures ANOVA main effect of
stimulus configuration F(1,15)= 12.43, p= 0.003, η2p = 0.453;
while main effect for visual area and the interaction did not reach
significance, p > 0.2). These results provide direct evidence to

suggest that a more strongly normalized population is more
susceptible to an attention-facilitated increase in gain.

Discussion
Taken together, our results reveal that a neural population’s
capability for attentional benefits is tightly linked to feature-tuned
normalization. The magnitude of attentional modulation depends
on the degree to which a population has normalized its response,
based on the degree of feature similarity within an image. In the
first experiment, we utilized an efficacious method to probe
orientation-tuned normalization of population responses within
human early visual cortex. By superimposing stimuli that differed
in their orientation content, we found that BOLD responses were
lower for stimuli that matched in their visual features, compared
with stimuli that were comprised of different features. In a second
experiment, we found a tight voxel-wise relationship between this
measure of tuned normalization strength and an independent
measure of attention modulation, suggesting that attention opti-
mizes information processing by modulating divisive normal-
ization. Critically, in a third experiment, we provided direct
converging evidence that the magnitude of attentional benefits
depends on the degree to which a population has normalized its
response; when a neural population was put under a stronger
suppressive state, the largest attentional effects emerged.

Our results square with a normalization-based model of
attention, which posits that attentional modulation arises through
interactions with divisive normalization5,14,31,32. This model is
the prevailing theory, to date, by which attention is believed to act
upon neural responses. While previous work provided support
for this model1,28,33,34,56, our results extend the notion that
normalization-driven properties of attention are feature
selective10,30,57. The standard normalization model proposes that
the spatial extent of an ‘attention field’ can reshape either relative
to the stimulus size or to match a particular feature in order to
modulate a population response, and suppression is considered to
be feature-agnostic, acting independently from the selective
properties computed within a respective region. However, divisive
normalization is modulated by contextual influences, where fea-
ture similarity results in stronger normalization, a property the
model currently does not account for. Extending the standard
normalization model by incorporating a tuned component into
the suppressive drive could potentially account for differences
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Fig. 5 Tuned normalization modulates spatial attention. a Stimuli were comprised of orientation bandpass-filtered noise gratings (outer diameter 15°;
inner diameter 3°; spared midline; individual component was rendered at 25% Michelson contrast, resulting in a combined grating of 50% Michelson
contrast), comparable to stimuli used for Experiment 1. Participants performed a demanding spatial attention task, detecting and discriminating a small gray
Gaussian disk embedded in either the upper or lower visual field of the attended location (a cue presented throughout the block at fixation informed the
participant to attend the left or right side of fixation). b Tuned normalization strength represents the difference between BOLD responses evoked by
orthogonal and collinear stimuli blocks when attention was directed away (% signal change). The orthogonal configuration elicited larger BOLD responses
compared with the collinear configuration across V1–V3. c Attention modulation reflects the difference between BOLD responses when spatial attention
was either directed toward or away from the stimuli locations, for both collinear and orthogonal configurations. Error bars denote ± 1 S.E.M., N= 6, gray
dots illustrate different participants; stimuli are modified for illustrative purposes.
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between the two stimuli configurations (Fig. 2d and see the
Methods section). Previous work has suggested that instead of
incorporating a tuned suppressive component into the normal-
ization model of attention, a more parsimonious description to
explain differences in the magnitude of suppression is by allowing
attention to be feature-selective5,26,34. While the notion of
feature-based attention is well established58,59, incorporating this
into the normalization model does not account for the results we
have presented here. In our study, we provide evidence that dif-
ferences between the two stimuli configurations emerge even
when they were unattended (Figs. 2d and 5b), suggesting that
tuned inhibition can arise in the absence of any aid of top-down
attentional feedback. Furthermore, in a third experiment we
manipulated spatial attention, while holding factors such as sti-
mulus size, attentional window size, and contrast relatively con-
stant, in order to investigate the role that feature-tuned
normalization has on attentional modulation (Fig. 5). We find
that the magnitude of attention is greatest when stimuli match in
their visual features. This finding is not readily explained by the
normalization model of attention, and instead would need to be
extended such that feature similarity results in a release from
normalization with attention. Future research measuring the full
neural contrast response function, and manipulating features
such as the size and shape of the attentional window, will shed
more light on precisely how this contribution of feature-tuning is
best incorporated into the normalization model of attention.

Normalization has been proposed to be a canonical compu-
tation throughout cortex, and relies on several mechanisms which
all serve to regulate the relative strength between neural repre-
sentations. Two well-established mechanisms within early visual
cortex are surround suppression and cross-orientation
inhibition60,61. Surround suppression is characterized as the
modulation of the neural response within the classical receptive
field, as a result of the intensity of stimulation presented outside
of the receptive field22,62, while cross-orientation inhibition is the
modulation of the neural response induced by presenting two
superimposed oriented stimuli components within the classical
receptive field61,63,64. Neuroimaging and psychophysical experi-
ments cannot precisely target a single receptive field, and instead
these methods measure population responses evoked by relatively
large stimuli, with the spatial area typically spanning far beyond
the receptive field of any individual neuron65. This likely makes
the interactions arising from overlay stimuli, as used here, more
analogous to surround suppression. While neuroimaging and
psychophysical studies using a typical center-surround stimuli
often report an attenuation of the response to the center
stimulus15,39,66, it is important to consider that this center does
not correspond to any particular receptive field center. Instead,
the center stimulus drives the response of a large population of
neurons, of which only those neurons close to the border between
the center and surround stimulus are likely to be attenuated65,67.
In this study, we set out to optimize surround suppression by
superimposing our stimuli configurations, presented full field (15°
visual angle stimulus diameter). We hypothesized that by keeping
the orientation of one of the components constant and manip-
ulating the orientation of the second component, we can induce
normalization more analogous to surround suppression within all
neural populations with receptive fields falling within our sti-
mulus bounds. The superimposed configurations indeed elicited
the predicted population responses that one would expect from
feature-tuned normalization15,65,68,69, as we found lower BOLD
responses for those configurations that matched in their orien-
tation content, compared with configurations with orthogonal
orientation information.

Feature-tuned normalization is suggested to play an active role
in the efficient coding of natural stimuli17,20–22,70,71. Our visual

environment is comprised of statistical biases between image
features, whereby nearby edges have a higher probability to be co-
oriented and belonging to the same contour, as compared with
more distant edges17. A tuned normalization pool could perhaps
incorporate these statistical dependencies by attenuating its
strength where features match, leading to an effective boost of the
responses at discontinuities, where features are no longer quite as
co-aligned. While tuned normalization plays a role by prioritizing
processing for salient items, potentially aiding the visual system in
segregating figure from ground, we ultimately rely on top-down
attentional systems to selectively enhance a small subset of that
information for prioritized processing. Selective attention may
interact with this figure/ground segregation process by selectively
highlighting objects in the environment, which often are defined
by their common feature properties.

Methods
Observers. Six healthy adults participated in the first two experiments (3 male,
mean age= 30), and seven adults (2 male, mean age= 28) participated in the third
experiment. Five adults participated in all three experiments. All observers pro-
vided written informed consent, and had normal or corrected-to-normal vision.
The Boston University Institutional Review Board approved the study. One
observer who participated in the final experiment was excluded from further data
analysis, based on consistent eye movements toward the cued spatial locations
(eye-movement analysis revealed a mean deviation from fixation of >1°). A power
analysis indicated that six subjects would be sufficient to detect the predicted
attention effects. Indeed, this sample size is consistent with previous fMRI attention
and vision studies24,28,33,34,51,53,59,72.

Apparatus and stimuli. Stimuli were generated using Matlab (R2013a) in con-
junction with the Psychophysics Toolbox73,74, rendered on a Macbook Pro (OS X
10.7), and were displayed on a rear-projection screen (subtending ~21° × 16°) using
a gamma-corrected projector. Participants viewed the display through a front
surface mirror. Participants were placed comfortably in the scanner with their
heads fixed, using padding to minimize head motion. Stimuli consisted of
bandpass-filtered noise gratings (outer diameter: 15°; inner diameter: 3°; at 50%
Michelson contrast). The bandpass filter spared only spatial frequencies between 2
and 3 cycles/°, orientation content centered at 45° or 135° (orientation bandwidth
of 10°), and was smoothed in the Fourier domain to avoid Gibbs ringing artifacts.

Tuned normalization experiment. Stimuli were the linear combination of the
stimuli described above. Superimposing these components created either ortho-
gonal (45°/135° and 135°/45°) or collinear (45°/45° and 135°/135°) stimuli, which
resulted in a doubling of the contrast to 100% Michelson contrast.

The two overlaid stimuli configurations were presented at 2 Hz (250 ms on,
250 ms off) for 14 s, where each stimulus presentation within a block consisted of
unique random noise stimuli. Blocks (2 s cue; 14 s stimulus presentation) were
pseudo-randomized over the course of a run, and interleaved with 16 s fixation
periods. Throughout the experiment observers performed a demanding fixation
task, finding targets in a rapid letter stream presented at fixation (5 Hz, letter size:
0.7°). During stimulus presentation blocks, target letters would appear with a
probability of 30%, and participants reported whenever they detected a ‘J’ or a ‘K’
amongst distractor letters (Supplementary Fig. 1). Observers were capable of
discriminating the target letters with high accuracy (mean= 0.93, S.E.M.= 0.02).

In addition to the overlaid stimuli, in separate runs we measured the BOLD
response to an individual stimulus component (50% Michelson contrast), and
doubled this obtained response to create a hypothetical additive sum. Oriented
stimuli (45° & 135°) were presented at 2 Hz in separate blocks (2 s cue, 14 s
stimulus presentation), and were interleaved with baseline periods. Observers
performed the same fixation task as described above, reporting the presence of
target letters embedded in a rapid letter stream presented at fixation (performance:
mean= 0.88, S.E.M.= 0.04). Participants completed 5–10 fMRI runs; each run
took 272 s to complete (8 stimulus blocks per run). In addition, a scan session
included two visual localizer scans, in which a flickering and rotating contrast
pattern was presented within the same aperture as the filtered noise stimuli
(blocked presentation, 16 s on and off; 6 stimulus blocks per run).

Attention modulation experiment. To examine the voxel-wise relationship
between tuned normalization and attention, we obtained a measure of attentional
modulation within the same scan sessions as the previous experiment (n= 6). In
this experiment, orientation stimuli (single component of the stimuli described
above; orientation content centered on 45° or 135°; at 50% Michelson contrast)
were presented at 2 Hz during a block (2 s cue, 14 s stimulus presentation). Par-
ticipants were informed at the start of each stimulus presentation block with a cue
(2 s) whether to either attend toward the stimuli, or to attend away from the grating
(Supplementary Fig. 6). During attended stimulus blocks, observers performed an
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orientation discrimination task, detecting and discriminating a change in the
orientation of the stimulus compared with the global orientation (45° or 135°),
target stimuli appeared with a probability of 60% throughout the stimulus block.
To match task difficulty for the orientation task across observers, we titrated
individual thresholds to yield an accuracy of 75%. During unattended stimulus
blocks observers performed the same fixation task as described above; target letters
appeared with a probability of 30%. All stimulus presentation blocks were com-
pletely identical, as both orientation and target letters would appear throughout a
block, and only the initial cue informed the participant which task to perform
(Supplementary Fig. 6). The two attentional condition blocks were pseudo-
randomized over the course of the run, each interleaved with 16 s baseline periods.
Behavioral data indicated performance for both tasks was well above chance
(attended task: mean= 0.75, S.E.M.= 0.05, unattended task: mean= 0.88,
S.E.M.= 0.04). Participants completed 5–10 fMRI runs; each run took 272 s to
complete (8 stimulus blocks per run).

Spatial attention experiment. To directly assess whether attention modulates
local gain control, we manipulated covert spatial attention for both stimuli con-
figurations. Participants (n= 6) were instructed to maintain their gaze within a
fixation circle (diameter, 1°) at the center of the display. Observers viewed stimuli
that were the linear combinations of the same bandpass-filtered noise stimuli
described above (outer diameter 15°; inner diameter 3°; spared midline), resulting
in either orthogonal (45°/135° and 135°/45°) or collinear (45°/45° and 135°/135°)
stimuli. Each individual component was rendered at 25% Michelson contrast,
resulting in a combined grating of 50% Michelson contrast. Note that the overall
contrast of these superimposed stimuli was lower than in the previous normal-
ization experiment, as we wanted to leave enough headroom in the response for the
attentional manipulation to take effect.

A cue (2 s) at the start of each block informed the participant to allocate their
covert spatial attention to either the left or right side of a central fixation point, and
remained displayed throughout the block (16 s total block duration; Supplementary
Fig. 9). Observers performed a demanding probe detection task, detecting and
discriminating whether a neutral gray Gaussian disk appeared at a random location
within the upper or lower visual field on the attended side of fixation (probe size
1.5°, with smoothed edges). Probes could appear on either side of fixation
throughout a stimulus block. However, observers were instructed to only respond
to targets presented on the attended side, as indicated by the cue presented at
fixation. The stimulus configuration displayed on either side of fixation was held
constant within a block. Stimulus configuration and attention conditions were
counter-balanced and presented in a pseudorandom order, and were interleaved
with fixation blocks of equal duration. The behavioral ability to discriminate
between targets was comparable for both stimuli configurations, as confirmed by
measures acquired outside the scanner (collinear: mean= 0.87, S.E.M.= 0.03;
orthogonal: mean= 0.90, S.E.M.= 0.03; paired t-test: t(5)= 0.502, p= 0.637).
Participants completed 8–14 fMRI runs; each run took 272 s to complete
(8 stimulus blocks per run). In addition, a scan session included two visual localizer
scans, in which a flickering and rotating contrast pattern was presented within the
same aperture as the stimuli (blocked presentation, 16 s on and off; 6 stimulus
blocks per run).

fMRI data acquisition and preprocessing. MRI data were acquired at Harvard
University’s Center for Brain Science Neuroimaging Center (Cambridge, Massa-
chusetts). Data for the first two experiments were collected in a single scan session,
using a 3.0 Tesla Tim Trio MRI Scanner (Siemens, Erlangen, Germany) equipped
with a 32-channel head coil. A scan lasted 2 h, during which we acquired: an
anatomical scan (voxel size: 1.2 mm isotropic) using a T1-weighted multi-echo
MPRAGE sequence, and functional volumes with whole brain coverage using a
simultaneous multislice (SMS) acquisition protocol (69 slices, TR= 2 s, TE= 30
ms, flip angle= 80°, FoV= 216 mm, voxel size= 2 mm isotropic, in-plane accel-
eration factor 3, multiband factor 375,76. The final experiment was collected using a
3.0 Tesla Prisma MRI Scanner equipped with a 64-channel head coil. A scan lasted
1.5–2 h, during which we acquired: an anatomical scan (voxel size: 1.2 mm iso-
tropic) using a T1-weighted multi-echo MPRAGE sequence, and functional
volumes with whole brain coverage using a SMS acquisition protocol (72 slices,
TR= 2 s, TE= 30 ms, flip angle= 80°, FoV= 208 mm, voxel size= 2 mm iso-
tropic, in-plane acceleration factor 3, multiband factor 375,77,78. All analyses were
performed in the native space for each participant. Functional volumes were
aligned to reconstructed anatomical data, using a surface-based registration
between the structural and functional MRI volumes implemented in Freesurfer79.
Functional data were preprocessed using standard motion-correction procedures,
Siemens slice timing correction, and boundary-based registration79,80. To optimize
voxel-wise analyses, no volumetric spatial smoothing was performed. Robust rigid
registration81 was performed to align experimental data within each scan session,
using the middle time-point of each scan. All further analyses were conducted
using custom code written in Matlab.

Regions of interest. Population receptive field data collected during a separate
scan session were analyzed using the ‘analyzePRF’ Matlab toolbox, and used to
define regions of interest up to area V354,55. Not all subjects were available for pRF

scanning; for one participant in Experiments 1 and 2, and one participant in
Experiment 3, we defined retinotopic regions based on traditional retinotopy scans
following standard procedures82. Within the regions of interest, we defined the top
25% of voxels based on the independent localizer scans (using a standard GLM
analysis, selecting the most visually responsive voxels by their respective sig-
nificance values) for those voxels whose estimated population receptive field (pRF)
location fell within the stimulus aperture (15° diameter). For the participants that
did not complete pRF scanning, a fixed localizer significance cut-off was used that
yielded a similar number of total voxels, compared with the other participants. This
voxel selection ensured that our analysis would be based on voxels that were
visually responsive to the localizer stimulus.

fMRI data analysis. The preprocessed and aligned raw MRI time series per scan,
for each voxel, was detrended, high-pass filtered and converted to percent signal
change. Task data for all experiments were analyzed by obtaining the activity
pattern for each stimulus block, and temporally averaging the BOLD activity across
all block of the same condition for every voxel within the ROI, after time shifting
by three TRs to account for the hemodynamic lag (Supplementary Figs. 1, 6 & 9).
For Experiment 1, we quantified the difference between the BOLD response evoked
by the orthogonal or collinear stimulus configurations by computing a difference,
where a positive difference signals stronger normalization (Fig. 3a). For Experiment
2, we similarly quantified attentional modulation as the difference between
attended vs. unattended blocks (Fig. 3b).

To compare the degree of voxel-wise dependency between these two measures
we computed a Spearman correlation, for the voxels that passed the stringent voxel
selection described above within the defined V1–V3 regions, which was Fisher-Z
transformed to allow for comparison between observers (Fig. 4a). To ensure that
the correlations were not driven by a signal-to-noise ratio (SNR) difference, our
voxel selection was broken up into four equal bins, demonstrating similar
correlations within each bin (Fig. 4b). To ensure that outliers did not drive the
computed correlations, we discounted voxels for this voxel-wise correlation
analysis that exceeded the mean normalization strength or attentional modulation
measure (for each observer) by more than 3 s.d. (between 0 and 8 voxels were
discounted for each observer, within a respective region).

For Experiment 3, covert spatial attention was manipulated to either the left or
right side from central fixation, leaving the opposite visual field unattended. This
allowed us to examine the effect of attention when attention was either directed
toward or away from either visual field, for both collinear and orthogonal stimuli
configurations (Supplementary Fig. 9). To quantify the magnitude of attentional
modulation, we computed the difference between attending toward vs. attending
away (Fig. 5).

Modeling image statistics. To assess the image statistics of our two stimuli
configurations we first analyzed the power of the two image classes in the frequency
domain using a standard 2-D Fourier transform. We generated 1000 unique
bandpass-filtered noise images, which were combined either in a collinear or
orthogonal configuration, resulting in 500 overlaid stimuli within each image class
(see the Apparatus and Stimuli section; the size was matched to the screen reso-
lution and visual angle to those images used in the experiments, so that these
images were identical to the ones participants viewed in the scanner). Collapsing
the Fourier domain power at each frequency band, over all orientations, confirmed
that both image types carry the most power (beside the DC component) in those
frequency bands the bandpass filter spared (2–3 cycles/°, see above; Fig. 2a).

Next, we constructed a V1-based energy detection model to describe a plausible
underlying neural mechanism that resolves the discrepancy between the image
statistics and the evoked BOLD response for each image configuration. We fed the
same set of 1000 images used for the Fourier analysis into the V1-based energy
detection model consisting of a bank of linear filters44–49. Because edge effects can
introduce spurious output, images were not masked to match the circular stimulus
configuration, and they were padded on the sides with 20% of the stimulus size
(resulting in an image resolution of 775 × 775 pixels). The bank of linear filters
consisted of 36 spatial frequencies (evenly spaced between 0.5 and 4 cycles/°), 8
orientations (evenly spaced between 0 and 180°), 2 phases (0, pi/2), with a receptive
field size of 2° visual angle (Fig. 2b). After convolving each pixel within the image
with following filters, we combined the quadrature-phase pairs analogous to a
complex-cell energy model45,83:

Energypos;or;sf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ph

image � filterpos;or;sf ;ph
� �2

s
ð1Þ

where Energypos,or,sf represents the complex-cell energy for each image at a given
position, orientation and spatial frequency, and filterpos,or,sf,ph represents the Gabor
filter at each particular position, orientation, spatial frequency, and phase.

The contrast energy for all quadrature pairs were summed across spatial
frequency scales and averaged over space, resulting in a measure of pooled contrast
energy within each orientation channel (Fig. 2b):

TEor ¼
P

pos

P
sf Energypos;or;sf

� �
num pos

ð2Þ
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where TEor represents the total stimulus contrast energy at a given orientation, and
num_pos reflects the total number of pixels within an image (775 × 775).

Each images’ summarized complex-cell output undergoes untuned divisive
normalization, effectively acting as a contrast gain control operator2,6,50:

Runtuned ¼
X
or

TEor
nP

TEor
num or

� �n

þ σ

� � ð3Þ

where, Runtuned represents the normalized stimulus energy of each image, num_or
reflects the total number of orientation channels, σ is a constant (constrained at
0.5), and n reflects the nonlinearity in the gain of the response (constrained at 1).
For illustrative purposes we computed the total mean stimulus energy over all 1000
images (combining both collinear and orthogonal image configurations) to demean
each output, and the maximum stimulus energy over all images to normalize to 1
(Fig. 2c).

Here, we incorporate a tuned component to the normalization pool84, to
account for the stronger sub-additive response to the collinear stimulus
configuration. The untuned component pools equally over all oriented filters (see
Eq. (3)), while the tuned component only contains information in the orientation
channel matching the orientation image statistics:

Rtuned ¼
X
or

TEor
n

ωorTEorð Þnþ
P

TEor
num or

� �n

þ σ

� � ð4Þ

where, Rtuned represents the normalization stimulus energy of each image, ωor

reflects an array of the same size as TEor, and only the orientation channel
matching the collinear stimulus configuration statistics are non-zero, allowing a
contribution of tuned normalization (i.e., the tuned component could only
modulate energy in the 45° orientation channel; Fig. 2d). Future research
measuring the full neural contrast response function, and manipulating features
such as the size and shape of the attentional window, will shed more light on
precisely how this contribution of feature-tuning is best incorporated into the
normalization model of attention.

Eye-position monitoring. Eye-tracking data were acquired for 5 out of 6 observers
for Experiments 1 and 2 (collected within the same scan session), and for 6 out of 7
observers for Experiment 3, using a MR-compatible SR Research EyeLink 1000 sys-
tem (sampled at 1 kHz). After removing blinks, the mean distance from fixation was
computed during time windows corresponding to the stimuli blocks. Specifically, we
first calculated the x- and y-deviations, and then for Experiments 1 and 2 computed
the absolute distance from fixation, while for Experiment 3 we focused on the x-trace
displacement as it gives a better indication whether participants made eye movements
toward the cued attended side. In both scan sessions eye movements were not >0.25°
from central fixation (first scan session: 0.24°; second scan session: 0.18°), remaining
well within the fixation circle (diameter 1°). However, one observer in Experiment 3
made eye movements >1° toward the attended side and was excluded from further
data analysis. Importantly, for all other observers eye movements did not differ
between stimulus configurations, when cued to attend either side of the visual field
(repeated measures ANOVA: F(1,5)= 0.92, p= 0.381).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We have uploaded all preprocessed fMRI and behavioral data, to the Open Science
Framework (OSF) at https://osf.io/4qz37. A reporting summary for this Article is
available as a Supplementary Information file.

Code availability
The experimental scripts used during data collection and analysis code to generate all
figures in the manuscript are available from the Open Science Framework (OSF) at
https://osf.io/4qz37.
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